精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,且AB=AC=AA1=1.
(Ⅰ)求证:A1C⊥平面ABC;
(Ⅱ)求二面角B-AC1-B1的余弦值.
考点:与二面角有关的立体几何综合题,直线与平面垂直的判定
专题:空间角
分析:(Ⅰ)由已知条件推导出A1C⊥AC1,从而得到AB⊥平面AA1C1C,由此能证明A1C⊥平面ABC1
(Ⅱ)以A为原点,AC,AB,AA1所在的直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B-AC1-B1的余弦值.
解答: (Ⅰ)证明:∵AC=AA1,且在直三棱柱ABC-A1B1C1中有AC⊥AA1
∴A1C⊥AC1
∵AB⊥AC,且在直三棱柱ABC-A1B1C1中,有AB⊥AA1,AA1∩AC=A,
∴AB⊥平面AA1C1C,
又A1C?平面AA1C1C,∴A1C⊥AB,
又AC1∩AB=A,∴A1C⊥平面ABC1
(Ⅱ)解:以A为原点,AC,AB,AA1所在的直线分别为x,y,z轴,
建立如图所示的空间直角坐标系,
则A(0,0,0),A1(0,0,1),B1(0,1,1)C1(1,0,1),C(1,0,0),
由(Ⅰ)知A1C⊥平面ABC1
∴平面ABC1的一个法向量为
A1C
=(1,0,-1),
设平面AB1C1的法向量
n
=(x,y,z)

AC1
=(1,0,1)
AB1
=(0,1,1)

n
AC1
=x+z=0
n
AB1
=y+z=0

取x=1,得
n
=(1,1,-1),
∴cos<
A1C
n
>=
1+0+1
2
3
=
6
3

∴二面角B-AC1-B1的余弦值为
6
3
点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
的一段图象过点(0,1),如图所示.
(1)求函数f(x)的表达式;
(2)把f(x)的图象向右平移
π
4
个单位长度得到g(x)的图象,求g(x)的对称轴方程和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

用一根长为10m的绳索围成一个圆心角为α(0<α<π),半径不超过2m的扇形场地,设扇形的半径为x m,面积为S m2
(1)写出S关于x的表达式,并求出此函数的定义域
(2)当半径x和圆心角α分别是多少时,所围成的扇形场地的面积S最大,并求最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明f(x)=-x2在(-∞,0)上是增函数,在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,cosB=
1
4
,求cosC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,且∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,点P、M、N分别为BC1、CC1、AB1的中点.
(1)求证:PN∥平面ABC;
(2)求证:A1M⊥AB1C1
(3)求点M到平面AA1B1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD中,AB=2,AD=5,E,F分别在AD,BC上且AE=1,BF=3,将四边形AEFB沿EF折起,使点B在平面CDEF上的射影H在直线DE上.

(1)求证:AD∥平面BFC;
(2)求二面角A-DE-F的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

7个排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头;                     
(2)甲、乙、丙三人必须在一起;
(3)甲、乙、丙三人两两不相邻;    
(4)甲不排头,乙不排当中.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①若ac2>bc2,则a>b;    
②若sinα=sinβ,则α=β;
③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;
④若f(x)=log2x,则f(|x|)是偶函数.
其中正确命题的序号是
 

查看答案和解析>>

同步练习册答案