精英家教网 > 高中数学 > 题目详情
用一根长为10m的绳索围成一个圆心角为α(0<α<π),半径不超过2m的扇形场地,设扇形的半径为x m,面积为S m2
(1)写出S关于x的表达式,并求出此函数的定义域
(2)当半径x和圆心角α分别是多少时,所围成的扇形场地的面积S最大,并求最大面积.
考点:扇形面积公式,基本不等式
专题:三角函数的求值
分析:(1)直接利用扇形的周长公式以及面积公式写出S关于x的表达式,并求出此函数的定义域.
(2)利用二次函数的单调性求出当半径x和圆心角α分别是多少时,所围成的扇形场地的面积S最大,直接求最大面积.
解答: 解:(1)扇形的半径为x m,扇形的周长10m,
扇形的弧长为:10-2x,m
∴S=
1
2
(10-2x)x=-x2+5x,x∈(
10
π+2
,2
].
(2)∵S=-x2+5x,x∈(
10
π+2
,2
].函数S在x∈(
10
π+2
,2
]上是增函数,
∴x=2时扇形面积最大,此时扇形的圆心角:
6
2
=3,
扇形面积的最大值为:6m2
点评:本题考查扇形面积公式以及周长公式的应用,二次函数的最大值的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若曲线y=x2+ax+b在点(1,b)处的切线方程是x-y+1=0,则(  )
A、a=1,b=2
B、a=-1,b=2
C、a=1,b=-2
D、a=-1,b=-2

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年国庆期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如下图的频率分布直方图.
(1)此调查公司在采样中,用到的是什么抽样方法?
(2)求这40辆小型车辆车速的中位数的估计值;
(3)若从车速在[80,90)的车辆中任抽取3辆,求抽出的3辆车中车速在[85,90)的车辆数ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(π-α)=2,计算
3sin2(π+α)-2cos2(π-α)+sin(2π-α)cos(π+α)
1+2sin2α+cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(0.25)-2+
8
27
1
3
+
1
8
-
2
3
-
1
32
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
(a>0).
(1)证明:当x>0时,f(x)在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数,并写出当x<0时f(x)的单调区间;
(2)已知函数h(x)=x+
4
x
-8,x∈[1,3]
,函数g(x)=-x-2b,若对任意x1∈[1,3],总存在x2∈[1,3],使得g(x2)=h(x1)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求曲线y=sinx(0≤x≤π)与直线y=
1
2
围成的封闭图形的面积?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,且AB=AC=AA1=1.
(Ⅰ)求证:A1C⊥平面ABC;
(Ⅱ)求二面角B-AC1-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一块半椭圆形钢板,其半轴长为2,短半轴长为1,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.

(Ⅰ)求面积S以x为自变量的函数式,并写出其定义域;
(Ⅱ)记f(x)=S2,求f(x)的最大值及面积S的最大值.

查看答案和解析>>

同步练习册答案