精英家教网 > 高中数学 > 题目详情
如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,且∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,点P、M、N分别为BC1、CC1、AB1的中点.
(1)求证:PN∥平面ABC;
(2)求证:A1M⊥AB1C1
(3)求点M到平面AA1B1的距离.
考点:点、线、面间的距离计算,直线与平面平行的判定,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(1)证明PN∥平面ABC,利用线面平行的判定,只需证明PN∥AC;
(2)证明A1M⊥AB1C1,只需证明AC1⊥A1M,B1C1⊥A1M;
(3)利用VM-AA1B1=VB1-MAA1,可求点M到平面AA1B1的距离,
解答: (1)证明:连结CB1
∵P是BC1的中点,∴CB1过点P,--(1分)
∵N为AB1的中点,∴PN∥AC,---------------------------(2分)
∵AC?面ABC,PN?面ABC,
∴PN∥平面ABC.--------------------------------------(4分)
(2)证法一:连结AC1,在直角△ABC中,
∵BC=1,∠BAC=30°,
∴AC=A1C1=
3
-----------------------------------(5分)
CC1
A1C1
=
A1C1
MC1
=
2

∴Rt△A1C1M~Rt△C1CA--------------------------------------------------------(7分)
∴∠A1MC1=∠CAC1,∴∠AC1C+∠CAC1=∠AC1C+∠A1MC1=90°
∴AC1⊥A1M.-------------------------------------------------------------------(8分)
∵B1C1⊥C1A1,CC1⊥B1C1,且C1A1∩CC1=C1
∴B1C1⊥平面AA1CC1,-----------------------------------------------------------(9分)
∴B1C1⊥A1M,又AC1∩B1C1=C1,故A1M⊥平面A B1C1,-------------------------(11分)
证法二:连结AC1,在直角△ABC中,∵BC=1,∠BAC=30°,
∴AC=A1C1=
3
-------------------------------------------------------------(5分)
设∠AC1A1=α,∠MA1C1
tanαtanβ=
AA1
A1C1
MC1
A1C1
=
6
3
2
2
=1
,------------------------------------------(7分)
∴α+β=90°  即AC1⊥A1M.-------------------------------------------------------(8分)
∵B1C1⊥C1A1,CC1⊥B1C1,且C1A1∩CC1=C1
∴B1C1⊥平面AA1CC1,-----------------------------------------------------------(9分)
∴B1C1⊥A1M,又AC1∩B1C1=C1
故A1M⊥面A B1C1,------------------------------------------------------------(11分)】
(3)设点M到平面AA1B1的距离为h,
由(2)知B1C1⊥平面AA1CC1
VM-AA1B1=VB1-MAA1------------------------------------------------------------(12分)
S△AA1B1•h=S△MAA1B1C1
h=
S△MAA1B1C1
S△AA1B1
=
1
2
×
3
×
6
×1
1
2
×2×
6
=
3
2

即点M到平面AA1B1的距离为
3
2
.----------------------------------------------(14分)
点评:本题考查直线与平面平行的证明,考查直线与平面垂直的证明,考查点M到平面AA1B1的距离,用好等体积是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2013年4月20日8点02分四川省雅安市芦山县(北纬30.3度,东经103.0度)
发生7.0级地震,此次地震中,受灾面积大,伤亡惨重,医疗队到达后,都会选择一个合理的位置,使伤员能在最短的时间内得到救治.医疗队首先到达O点,设有四个乡镇,分别位于一个矩形ABCD的四个顶点A,B,C,D,为了救灾及灾后实际重建需要.需要修建三条小路OE、EF和OF,要求O是AB的中点,点E在边BC上,点F在边AD上,AB=50千米,BC=25
3
千米且∠EOF=90°,如图所示.
(1)设∠BOE=α,试将△OEF的周长表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每千米铺设费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
(a>0).
(1)证明:当x>0时,f(x)在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数,并写出当x<0时f(x)的单调区间;
(2)已知函数h(x)=x+
4
x
-8,x∈[1,3]
,函数g(x)=-x-2b,若对任意x1∈[1,3],总存在x2∈[1,3],使得g(x2)=h(x1)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-2x2+ax+b的图象在点P(3,f(3)),处的切线方程为y=3x-5.
(Ⅰ)求实数a,b的值;
(Ⅱ)设g(x)=f(x)+
m
x-2

①若g(x)是[3,+∞)上的增函数,求实数m的最大值;
②是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等.若存在,求出点Q坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,且AB=AC=AA1=1.
(Ⅰ)求证:A1C⊥平面ABC;
(Ⅱ)求二面角B-AC1-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex+1
ax2+4x+4
,其中a∈R
(Ⅰ)若a=0,求函数f(x)的极值;
(Ⅱ)当a>1时,试确定函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x2-5x-14≤0},B={x|m+1<x<2m-1},若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,1]上给定曲线y=x2,试在此区间内确定点t的值,使图中阴影部分的面积:
(1)S1=S2
(2)S=S1+S2最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

α为第二象限角sinα=
3
5
,则tanα=
 

查看答案和解析>>

同步练习册答案