精英家教网 > 高中数学 > 题目详情
在直三棱柱ABC-A1B1C1中,AB=BC=
2
,BB1=2,∠ABC=90°,E、F分别为AA1,C1B1的中点,沿棱柱表面,从E到F的最短路径的长为
 
考点:多面体和旋转体表面上的最短距离问题
专题:计算题,空间位置关系与距离
分析:由题意,题中E、F分别在AA1、C1B1上,所以“展开”后的图形中必须有AA1、C1B1,画出图形,分类求出结果,找出最短路径.
解答: 解:题中E、F分别在AA1、C1B1上,所以“展开”后的图形中必须有AA1、C1B1;故“展开”方式有以下四种:
(ⅰ)沿CC1将面ACC1A1和面BCC1B1展开至同一平面,如图1,求得:EF2=
11
2
+2
2

(ⅱ)沿BB1将面ABB1A1和面BCC1B1展开至同一平面,如图2,求得:EF2=
7
2
+2
2

(ⅲ)沿A1B1将面ABB1A1和面A1B1C1展开至同一平面,如图3,求得:EF2=
7
2
+
2

(ⅳ)沿A1C1将面ACC1A1和面A1C1B1展开至同一平面,如图4,求得:EF2=
9
2

比较可得(ⅳ)情况下,EF的值最小;
故EF的最小值为
3
2
2


故答案为:
3
2
2
点评:本题考查把两个平面展开在同一个平面内的方法,利用勾股定理求线段的长度,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且有Sn=
1
2
n(an+1),n∈N*,又a2=3
(Ⅰ)写出a1,a3,a4并猜想{an}的通项公式;
(Ⅱ)用数学归纳法证明(1)的猜想结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的周期为2的函数,当x∈[0,1]时,f(x)=x+1,则f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非负实数a,b满足a+b≤1,则关于x的一元二次方程x2+ax+b2=0有实根的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知曲线C的参数方程是
y=sinθ+1
x=cosθ
(θ是参数),若以O为极点,x轴的正半轴为极轴,则曲线C的极坐标方程可写为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-(a-1)x2+b2x,其中a,b为常数.若任取a∈[0,4],b∈[0,3],则函数f(x)在R上是增函数的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=x+m与曲线y=
4-x2
有且只有一个公共点,则实数m的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(1)存在实数x,使sinx+cosx=2;  
(2)若α,β是锐角△△ABC的内角,则sinα>cosβ; 
(3)函数y=sin(
2
3
x-
7
)是偶函数;  
(4)函数y=sin2x的图象向右平移
π
4
个单位,得到y=sin(2x+
π
4
)的图象.
其中正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,若b=
3
a,S△AOB=
3
,则p=(  )
A、1
B、
3
2
C、2
D、3

查看答案和解析>>

同步练习册答案