6£®ÉèÊýÁÐan=min{k+$\frac{n}{4k}$|k¡ÊN*£©£¬¶¨Òå¡°ÓÅÊýÁС±£º¡÷an=an-[an]£¨n=1£¬2£¬¡­£©£¬ÆäÖÐ[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£®£¨1£©Çóa1£¬a2£¬a3£¬a4µÄÖµ£»
£¨2£©Ì½¾¿ÊýÁÐ{an}µÄµ¥µ÷ÐÔ£»
£¨3£©Ì½¾¿ÓÅÊýÁУº¡÷a1£¬¡÷a2£¬¡­£¬¡÷a2015ÖеÈÓÚ0µÄÏîµÄ¸öÊý£»
£¨4£©ÉèSn=¡÷a1+¡÷a2+¡­+¡÷anΪÓÅÊýÁеÄǰnÏîºÍ£¬ÊÔÇóS2015µÄÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒ⣬ȡk=1¿ÉµÃan£¬ÔòÊýÁеÄa1£¬a2£¬a3£¬a4µÄÖµ¿ÉÇó£»
£¨2£©Ö±½ÓÀûÓÃ×÷²î·¨ËµÃ÷ÊýÁÐÊǵÝÔöÊýÁУ»
£¨3£©ÓÉÌâÒâ¿ÉµÃ£¬an=[an]£¬ÓÉ´Ë¿ÉÖª$1+\frac{n}{4}=[1+\frac{n}{4}]$£¬Çó³öǰ2015ÏîÖÐÊÇ4µÄ±¶ÊýÏîµÃ´ð°¸£»
£¨4£©Ì½¾¿ÓÅÊýÁеÄÏî³Ê4ΪÖÜÆÚÖÜÆÚ³öÏÖ£¬Óɴ˿ɵô𰸣®

½â´ð ½â£º£¨1£©¡ßan=min{k+$\frac{n}{4k}$|k¡ÊN*}£¬
¡àk=1£¬${a}_{n}=1+\frac{n}{4}$£®
¡à${a}_{1}=\frac{5}{4}£¬{a}_{2}=\frac{3}{2}£¬{a}_{3}=\frac{7}{4}£¬{a}_{4}=2$£»
£¨2£©¡ß${a}_{n}=1+\frac{n}{4}$£¬
¡à${a}_{n}-{a}_{n-1}=1+\frac{n}{4}-1-\frac{n-1}{4}=\frac{1}{4}£¾0$£¬
¡àan£¾an-1£®
¡àÊýÁÐ{an}µ¥µ÷µÝÔö£»
£¨3£©¡÷an=an-[an]£¬
Áî¡÷an=0£¬µÃan=[an]£¬
¡à$1+\frac{n}{4}=[1+\frac{n}{4}]$£¬
n=4¡¢8¡¢12¡¢¡­µÈ4µÄ±¶Êý£¬
¡à2015¡Â4=503Óà3£®
¡à¡÷a1£¬¡÷a2£¬¡­£¬¡÷a2015ÖеÈÓÚ0µÄÏîµÄ¸öÊýÊÇ503Ï
£¨4£©ÓÉ¡÷an=an-[an]£¬¿ÉµÃT=4³öÏÖ0£®
µ±n¡Ü4ʱ£¬¡÷a1=$\frac{1}{4}$£¬¡÷a2=$\frac{2}{4}$£¬¡÷a3=$\frac{3}{4}$£¬¡÷a4=0£»
µ±4£¼n¡Ü8ʱ£¬¡÷a5=$\frac{1}{4}$£¬¡÷a6=$\frac{2}{4}$£¬¡÷a7=$\frac{3}{4}$£¬¡÷a8=0£»
¡­
µ±2012£¼n¡Ü2015ʱ£¬¡÷a2013=$\frac{1}{4}$£¬¡÷a2014=$\frac{2}{4}$£¬¡÷a2015=$\frac{3}{4}$£®
¡à${S}_{2015}=504¡Á£¨\frac{1}{4}+\frac{2}{4}+\frac{3}{4}£©=756$£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄÓ¦Ó㬹ؼüÊǶÔж¨ÒåµÄÀí½â£¬Ì½¾¿ÓÅÊýÁйæÂÉÐԵijöÏÖÊǽâ´ð¸ÃÌâµÄ¹Ø¼ü£¬ÊÇÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªÏòÁ¿$\overrightarrow a=£¨1£¬2£©$£¬$\overrightarrow a+\overrightarrow b$Óë$\overrightarrow a$¹²Ïߣ¬$|\overrightarrow b|=2\sqrt{5}$£¬ÔòÏòÁ¿$\overrightarrow b$=£¨2£¬4£©»ò£¨-2£¬-4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈôÃݺ¯Êýy=mxn£¨m£¬n¡ÊR£©µÄͼÏó¾­¹ýµã$£¨{8£¬\frac{1}{4}}£©$£¬Ôòm+n=$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®»¯¼ò£º
£¨1£©$a•\sqrt{\root{3}{a^4}•{a^3}•\root{3}{{{a^{-7}}}}}¡Â\root{3}{{\sqrt{{a^{-3}}}•{a^2}•\sqrt{a^5}}}$
£¨2£©$\sqrt{\frac{9}{4}}-{£¨\frac{8}{27}£©^{-\frac{2}{3}}}+£¨lg5{£©^2}+2lg2-{£¨lg2£©^2}+£¨{log_4}81£©•£¨{log_{27}}64£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªsin¦Á=2cos¦Á£¬Ôò3cos2¦Á-2sin¦Ácos¦Á+5sin2¦Á=$\frac{19}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ö±Ïßy=kx+1ÓëÔ²x2+y2=1µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
A£®ÏཻB£®ÏàÇÐC£®Ïཻ»òÏàÇÐD£®²»ÄÜÈ·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Éèf£¨x£©=$\frac{1}{3}$x3+3x2+ax£¬Èôg£¨x£©=$\frac{1}{{4}^{x}}$£¬¶ÔÈÎÒâx1¡Ê[$\frac{1}{2}$£¬1]£¬´æÔÚx2¡Ê[$\frac{1}{2}$£¬2]£¬Ê¹µÃf¡ä£¨x1£©¡Üg£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨-¡Þ£¬-$\frac{13}{2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Sn=$\frac{{a}_{1}£¨{3}^{n}-1£©}{2}$£¨¶Ôn¡Ý1ºã³ÉÁ¢£©ÇÒa4=54£¬Ôòan=$\frac{2}{3}•{3}^{n}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Éè¼ÆÇóº¯Êýy=ax2+bx+c£¨a£¾0£©µÄ×îСֵµÄËã·¨£¬²¢»­³öÕâ¸öËã·¨µÄ³ÌÐò¿òͼ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸