精英家教网 > 高中数学 > 题目详情
11.直线y=kx+1与圆x2+y2=1的位置关系是(  )
A.相交B.相切C.相交或相切D.不能确定

分析 求出直线系经过的定点,判断定点与圆的位置关系即可.

解答 解:直线y=kx+1恒过(0,1),因为(0,1)在圆x2+y2=1上,所以直线y=kx+1与圆x2+y2=1的位置关系是:相交或相切.
故选:C.

点评 本题考查直线与圆的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),作直线l交椭圆于P,Q两点.M为线段PQ的中点,O为坐标原点,设直线1的斜率为k1,直线OM的斜率为k2,k1k2=-$\frac{2}{3}$.
(I)求椭圆C的离心率;
(Ⅱ)设直线l与x轴交于点D(-5,0),且满足$\overrightarrow{DP}$=2$\overrightarrow{QD}$,当△0PQ的面积最大时,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U={0,1,2,3,4,5,6},集合A={x∈Z|x2-5x+6≤0},集合B={1,3,4,6},则集合A∩(∁UB)=(  )
A.{0}B.{2}C.{0,1,2,4,6}D.{0,2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\frac{1}{2}cos(ω\;x+\frac{π}{3})$,且f(x+3)-f(x)=0,则ω为(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列an=min{k+$\frac{n}{4k}$|k∈N*),定义“优数列”:△an=an-[an](n=1,2,…),其中[x]表示不超过x的最大整数.(1)求a1,a2,a3,a4的值;
(2)探究数列{an}的单调性;
(3)探究优数列:△a1,△a2,…,△a2015中等于0的项的个数;
(4)设Sn=△a1+△a2+…+△an为优数列的前n项和,试求S2015的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}中,a1=1,an=an-1+$\frac{1}{2}$(n≥2),则数列{an}的前9项和等于(  )
A.27B.25C.23D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,长方体ABCD-A′B′C′D′中,AD=2AB=2AA′=2.
(1)求证:A′B⊥平面ADC′;
(2)求二面角D′-AC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{2x+b}{{1+{x^2}}}$是定义在(m,1)上的奇函数(a,b,m为常数).
(1)确定函数f(x)的解析式及定义域;
(2)判断并利用定义证明f(x)在(m,1)上的单调性;
(3)若对任意t∈[-2,2],是否存在实数x使f(tx-2)+f(x)<0恒成立?若存在,则求出实数x的取值范围,若不存在则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设直线l:ρcosθ+$\sqrt{3}$ρsinθ=2$\sqrt{2}$与圆C:ρ=2交于A、B两点.
(Ⅰ)求A、B两点的极坐标;
(Ⅱ)设P是圆C上的动点,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案