精英家教网 > 高中数学 > 题目详情
6.设α,β,γ是三个互不重合的平面,m,n是两条不重合的直线,下列命题中正确的是(  )
A.若α⊥β,β⊥γ,则α⊥γB.若m∥α,n∥β,α⊥β,则m⊥n
C.若α⊥β,m?β,m⊥α,则m∥βD.若α∥β,m∥α,则m∥β

分析 根据空间直线,平面直线平行或垂直的判定定理和性质定理进行判断即可.

解答 解:A.同时垂直于一个平面的两个平面不一定垂直,可能平行也可能相交,故A错误,
B.若m∥α,n∥β,α⊥β,则m,n关系不确定,故B错误,
C.若α⊥β,m?β,m⊥α,则m∥β,成立,
D.若α∥β,m∥α,则m∥β或m?β,故D错误,
故选:C

点评 本题主要考查空间直线和平面直线平行或垂直的判断,利用相应的判定定理和性质定理是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则点C到平面BC1D的距离等于(  )
A.$\sqrt{6}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{6}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x2-1,则f(1)=(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为促进某品牌彩电的销售,厂家设计了如下两套降价方案:
方案一:先降x%,再降x%;
方案二:一次性降价2x%(x>0).
问那套方案降价幅度大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=exsinx-cosx,g(x)=xcosx-$\sqrt{2}$ex,其中e是自然对数的底数.
(1)判断函数y=f(x)在(0,$\frac{π}{2}$)内的零点的个数,并说明理由;
(2)?x1∈[0,$\frac{π}{2}$],?x2∈[0,$\frac{π}{2}$],使得f(x1)+g(x2)≥m成立,试求实数m的取值范围;
(3)若x>-1,求证:f(x)-g(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1的离心率是e=$\frac{1}{2}$,则a的值为(  )
A.3$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求与椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$共焦点的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆的两焦点是F1(-1,0),F2(1,0),离心率e=$\frac{1}{2}$.
(1)求椭圆方程;
(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=x3+ax2+bx+a2(a>0)在x=1处的取得极值10,则a+b=-7.

查看答案和解析>>

同步练习册答案