精英家教网 > 高中数学 > 题目详情
15.已知椭圆的两焦点是F1(-1,0),F2(1,0),离心率e=$\frac{1}{2}$.
(1)求椭圆方程;
(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2

分析 (1)由题意设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),可得c=1,$\frac{c}{a}$=$\frac{1}{2}$,又a2=b2+c2,解得即可得出.
(2)由|PF1|-|PF2|=1,|PF1|+|PF2|=4,联立解得|PF1|,|PF2|.在△PF1F2中,由余弦定理可得:cos∠F1PF2=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}||P{F}_{2}|}$,即可得出.

解答 解:(1)由题意设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
∵椭圆的两焦点是F1(-1,0),F2(1,0),离心率e=$\frac{1}{2}$.
∴c=1,$\frac{c}{a}$=$\frac{1}{2}$,又a2=b2+c2,解得a=2,b2=3.
∴椭圆的标准方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)∵|PF1|-|PF2|=1,|PF1|+|PF2|=4,
联立解得|PF1|=$\frac{5}{2}$,|PF2|=$\frac{3}{2}$.
在△PF1F2中,由余弦定理可得:cos∠F1PF2=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}||P{F}_{2}|}$=$\frac{(\frac{5}{2})^{2}+(\frac{3}{2})^{2}-{2}^{2}}{2×\frac{5}{2}×\frac{3}{2}}$=$\frac{3}{5}$.

点评 本题考查了椭圆与双曲线的标准方程及其性质、余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设数列{an}满足an+1+an-1≤2an(n∈N*,n≥2),则称数列{an}为凸数列,已知等差数列{bn}的公差为lnd,首项b1=2,且数列{$\frac{{b}_{n}}{n}$}为凸数列,则d的取值范围是(  )
A.(0,e2]B.[e2,+∞)C.(2,e2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设α,β,γ是三个互不重合的平面,m,n是两条不重合的直线,下列命题中正确的是(  )
A.若α⊥β,β⊥γ,则α⊥γB.若m∥α,n∥β,α⊥β,则m⊥n
C.若α⊥β,m?β,m⊥α,则m∥βD.若α∥β,m∥α,则m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.方程4x2+ky2=1的曲线是焦点在y上的椭圆,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数m,6,9构成一个等比数列,则圆锥曲线$\frac{x^2}{m}$+y2=1的离心率为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1,F2为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{b}^{2}}$=1(3>b>0)的左右两个焦点,若存在过焦点F1,F2的圆与直线x+y+2=0相切,则椭圆离心率的最大值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等差数列{an}中公差d≠0,若a3+am-a7=an+a2-a5,则m-n=(  )
A.$\frac{1}{4}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若存在一个圆,当θ∈[0,2π]时,恒与直线xcosθ+ysinθ-cosθ-2sinθ-2=0相切,则圆的方程为(x-1)2+(y-2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若角α的终边落在直线y=3x上,则cosα的值为(  )
A.±$\frac{\sqrt{10}}{5}$B.±$\frac{\sqrt{10}}{10}$C.±$\frac{1}{3}$D.±$\frac{1}{5}$

查看答案和解析>>

同步练习册答案