精英家教网 > 高中数学 > 题目详情
13.已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{1}{{a}_{n}^{2}-1}$(n∈N*),求数列{bn}的前n项和Tn

分析 (I)设等差数列{an}的公差为d,由a3=7,a5+a7=26,可得$\left\{\begin{array}{l}{{a}_{1}+2d=7}\\{2{a}_{1}+10d=26}\end{array}\right.$,解出利用等差数列的前n项和公式即可得出;
(Ⅱ)bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”即可得出.

解答 解:(I)设等差数列{an}的公差为d,∵a3=7,a5+a7=26,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=7}\\{2{a}_{1}+10d=26}\end{array}\right.$,解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
∴数列{an}的前n项和Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
(Ⅱ)bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴数列{bn}的前n项和Tn=$\frac{1}{4}[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$=$\frac{n}{4n+4}$.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(Ⅰ)求证:AC1∥平面CDB1
(Ⅱ)求证:AC⊥BC1
(Ⅲ)求直线AB1与平面BB1C1C所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)0.250.5124
销量y(件)1612521
(1)根据上面的数据判断,y=ax+b与y=$\frac{c}{x}$+d哪一个适宜作为产品销量y关于单价x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(计算结果保留两位小数)

参考公式其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a满足|a|<2,则事件“点M(1,1)与N(2,0)分别位于直线l:ax-2y+1=0两侧”的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{8}$C.$\frac{3}{8}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=($\sqrt{3}$sinx,cos2x),设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a-c)•cosB=b•cosC,求f($\frac{A}{2}$)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2cos(ωx+φ)+1(ω>0,|φ|<$\frac{π}{2}$),其图象与直线y=3相邻两个交点的距离为$\frac{2π}{3}$,若f(x)>1对?x∈(-$\frac{π}{12}$,$\frac{π}{6}$)恒成立,则φ的取值范围是(  )
A.[-$\frac{π}{6}$,$\frac{π}{6}$]B.[-$\frac{π}{4}$,0]C.(-$\frac{π}{3}$,-$\frac{π}{12}$]D.[0,$\frac{π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在空间直角坐标系中,A(1,2,3),B(2,2,0),则$\overrightarrow{AB}$=(  )
A.(1,0,-3)B.(-1,0,3)C.(3,4,3)D.(1,0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简与计算:
(Ⅰ)2${\;}^{lo{g}_{2}5}$-log${\;}_{\frac{1}{2}}$8;
(Ⅱ)$\frac{sin(π-α)+sin(\frac{π}{2}-α)+sin(2π-α)}{cos(π+α)+sin(\frac{π}{2}+α)+cos(2π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.以初速度为v0(v0>0)做竖直上抛运动的物体,t时刻的高度为s(t)=v0t-$\frac{1}{2}$gt2(g为常数),求物体从t0到t0+△t间的平均速度.

查看答案和解析>>

同步练习册答案