精英家教网 > 高中数学 > 题目详情
12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点为F1,F2,若双曲线C上存在一点P,使得△PF1F2为等腰三角形,且cos∠F1PF2=$\frac{1}{4}$,则双曲线C的离心率为(  )
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.3

分析 运用双曲线的定义和等腰三角形的定义,由离心率公式,计算即可得到

解答 解:由双曲线的定义可得,||PF1|-|PF2||=2a,
由△PF1F2为等腰三角形,则|PF1|=|F1F2|或|F1F2|=|PF2|,
即有|PF2|=2c-2a或|PF1|=2c-2a,
即有cos∠F1PF2=$\frac{c-a}{2c}$=$\frac{1}{4}$
∴e=$\frac{c}{a}$=2.
故选:C.

点评 本题考查双曲线的定义和性质,考查离心率的求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设平面上一动点P到定点(1,0)的距离与到定直线x=4的距离之比为$\frac{1}{2}$.
(Ⅰ)求动点的p轨迹c的方程;
(Ⅱ)设定点a(-2,$\sqrt{3}$),曲线上C一点M(x0,y0),其中y0≥0.若曲线C上存在两点E,F,使$\overrightarrow{AE}$+$\overrightarrow{AF}$=$\overrightarrow{AM}$,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等差数列{an}中,a4+a8+a10+a14=20,则前17项的和为85.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=10cosφ}\\{y=8sinφ}\end{array}\right.$,(其中φ为参数)在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{\begin{array}{l}{X=\frac{1}{5}x+3}\\{Y=\frac{1}{4}y}\end{array}\right.$得到曲线C1
(1)求曲线C1的普通方程;
(2)设点P是曲线C上的动点,过点P作直线与曲线C1切于点Q,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知{an},{bn}均为等比数列,其前n项和分别为Sn,Tn,若对任意的n∈N*,总有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{{3}^{n}+1}{4}$,则$\frac{{a}_{3}}{{b}_{3}}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法中不正确的是(  )
A.若命题p:?x0∈R,使得x02-x0+1<0,则¬p:?x∈R,都有x2-x+1≥0.
B.存在无数个α、β∈R,使得等式sin(α-β)=sinαcosβ+cosαsinβ成立
C.命题“在△ABC中,若sinA=sinB,则A=B”的逆否命题是真命题
D.“p∧q为真”是“p∨q为真”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.极坐标系下,P为曲线$\sqrt{2}$rsin(θ-$\frac{π}{4}$)=a(a>0)上的动点,Q为曲线r=2sinθ上的动点,若线段PQ长度的最小值为$\sqrt{2}$-1,则a的值为$\frac{5-\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦点分别为${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,点P在椭圆C上,满足|PF1|=7|PF2|,tan∠F1PF2=4$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点A(1,0),试探究是否存在直线l:y=kx+m与椭圆C交于D、E两点,且使得|AD|=|AE|?若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若圆C:(x-a)2+[y-(2a-4)]2=1与圆D:x2+(y+1)2=4有公共点,则a的取值范围是(2-$\frac{2\sqrt{5}}{5}$,2+$\frac{2\sqrt{5}}{5}$).

查看答案和解析>>

同步练习册答案