精英家教网 > 高中数学 > 题目详情

【题目】三棱柱中,的中点,交于点在线段上,且.

(Ⅰ)求证:平面

(Ⅱ)若,三棱锥的体积为,求三棱柱的高.

【答案】(Ⅰ)证明见解析;(Ⅱ)6.

【解析】解法1

(Ⅰ)连结,交于点,连结.则有.

由题意,可知,所以

     所以,故

     又,所以

     所以

     又因为平面,平面,

所以平面. 

(Ⅱ)设三棱柱的高为.

中,

由余弦定理,得

,解得

所以的面积为

由(Ⅰ)可知,点到平面的距离等于点到平面的距离,

所以

又因为

所以,故

所以,解得

故三棱柱的高为6.

解法2:(Ⅰ)取的中点,连结.则有

     所以四边形为平形四边形,故

     又平面,平面,

所以平面.

由题意,可知,所以

     故,所以

     又,故.

     又,所以

     又平面,平面,

所以平面, 

     又因为平面

     所以平面平面.

     又平面

所以平面. 

(Ⅱ)同解法1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若满足,且在定义域内恒成立,求实数的取值范围;

(Ⅱ)若函数在定义域上是单调函数,求实数的最小值;

(Ⅲ)当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:

A

B

C

D

E

身高

1.69

1.73

1.75

1.79

1.82

体重指标

19.2

25.1

18.5

23.3

20.9


(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率
(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】六个面都是平行四边形的四棱柱称为平行六面体.已知在平行四边形ABCD中(如图1),有AC2+BD2=2(AB2+AD2),则在平行六面体ABCD﹣A1B1C1D1中(如图2),AC12+BD12+CA12+DB12等于(
A.2(AB2+AD2+AA12
B.3(AB2+AD2+AA12
C.4(AB2+AD2+AA12
D.4(AB2+AD2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列前5项和为50, ,数列的前项和为 .

(Ⅰ)求数列 的通项公式;

(Ⅱ)若数列满足, ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图表示某人的体重与年龄的关系,则(  )

A.体重随年龄的增长而增加
B.25岁之后体重不变
C.体重增加最快的是15岁至25岁
D.体重增加最快的是15岁之前

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R上的奇函数.

(1)求的值;

(2)已知,函数,求的值域;

(3)若,试问是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点. (Ⅰ)若 ,求直线AB的斜率;
(Ⅱ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体名学生中随机抽取了名学生的体检表,并得到如图的频率分布直方图.

年级名次

是否近视

近视

不近视

(1)若直方图中后四组的频数成等差数列,试估计全 年级视力在以下的人数;

(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在名和名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过的前提下认为视力与学习成绩有关系?

7.879

附:

查看答案和解析>>

同步练习册答案