精英家教网 > 高中数学 > 题目详情
1.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$,则角A等于$\frac{π}{6}$.

分析 利用正弦定理将边化角,根据和角公式化简解出cosA.

解答 解:∵$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$,
∴(2b-$\sqrt{3}$c)cosA=$\sqrt{3}$acosC,
∴2sinBcosA=$\sqrt{3}$sinAcosC+$\sqrt{3}$sinCcosA=$\sqrt{3}$sin(A+C)=$\sqrt{3}$sinB,
∴cosA=$\frac{\sqrt{3}}{2}$.
∴A=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题考查了正弦定理,两角和的正弦函数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x2-x)lnx-$\frac{3}{2}{x^2}$+2x.
(1)求函数f(x)的单调区间;
(2)设函数g(x)=$\frac{(a+1)x}{lnx}$,对任意x∈(1,+∞)都有f(x)>g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2\sqrt{2}}{3}$,且点(1,$\frac{2\sqrt{2}}{3}$)在椭圆上,经过椭圆的左顶点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)已知点P为线段AD的中点,OM∥l,并且OM交椭圆C于点M.
(i)是否存在点Q,对于任意的k(k≠0)都有OP⊥EQ?若存在,求出点Q的坐标,若不存在,请说明理由;
(ii)求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,∠A,∠B,∠C所对的边长分别是x+1,x,x-1,且∠A=2∠C,则△ABC的周长为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数$\frac{a-i}{1+i}$(a∈R)是纯虚数,则复数3a+4i在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设F1、F2是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,P为双曲线左支上任意一点,若|PF2|=2|PF1|,∠F1PF2=60°,则双曲线离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$+$\sqrt{3}$D.$\sqrt{3}$-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.从5台甲型和4台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有70种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,圆O:x2+y2=4,椭圆M:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<2),A为椭圆右顶点,过原点O且异于坐标轴的直线与椭圆M交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中D(-$\frac{6}{5}$,0).设直线AB,AC的斜率分别为k1,k2,且k1k2=-$\frac{1}{4}$.
(1)求椭圆M的方程;
(2)记直线PQ,BC的斜率分别为kPQ,kBC,是否存在常数λ,使得kPQ=λkBC?若存在,求λ值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≥0}\\{0<y≤2}\end{array}\right.$,则z=$\frac{y+1}{x+5}$的取值范围是($\frac{1}{5}$,3].

查看答案和解析>>

同步练习册答案