| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$+$\sqrt{3}$ | D. | $\sqrt{3}$-$\sqrt{2}$ |
分析 运用双曲线的定义和三角形的余弦定理,结合双曲线的离心率公式,计算即可得到所求值.
解答 解:由双曲线的定义可得,
|PF2|-|PF1|=2a,
由|PF2|=2|PF1|,可得
|PF2|=4a,|PF1|=2a,
在△PF1F2中,由余弦定理可得
|F1F2|2=|PF2|2+|PF1|2-2|PF2|•|PF1|cos∠F1PF2,
即为4c2=16a2+4a2-2•4a•2a•$\frac{1}{2}$=12a2,
即有c=$\sqrt{3}$a,则e=$\frac{c}{a}$=$\sqrt{3}$.
故选:B.
点评 本题考查双曲线的离心率的求法,注意运用双曲线定义和三角形的余弦定理,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0 | B. | ?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0 | ||
| C. | ?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0 | D. | ?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com