分析 由已知及正弦定理,二倍角的正弦函数公式可得:cosC=$\frac{x+1}{2(x-1)}$,又由余弦定理可得:cosC=$\frac{(x+1)^{2}+{x}^{2}-(x-1)^{2}}{2x(x+1)}$,从而可得$\frac{(x+1)^{2}+{x}^{2}-(x-1)^{2}}{2x(x+1)}$=$\frac{x+1}{2(x-1)}$,解得x,即可得解三角形的周长.
解答 解:∵∠A,∠B,∠C所对的边长分别是x+1,x,x-1,且∠A=2∠C,
∴由正弦定理可得:$\frac{x+1}{sinA}=\frac{x-1}{sinC}$,
∴$\frac{x+1}{2sinCcosC}=\frac{x-1}{sinC}$,可得:cosC=$\frac{x+1}{2(x-1)}$,
又∵由余弦定理可得:cosC=$\frac{(x+1)^{2}+{x}^{2}-(x-1)^{2}}{2x(x+1)}$,
∴$\frac{(x+1)^{2}+{x}^{2}-(x-1)^{2}}{2x(x+1)}$=$\frac{x+1}{2(x-1)}$,整理即可解得x=5,
∴△ABC的周长为:(x+1)+x+(x-1)=3x=15.
故答案为:15.
点评 本题主要考查了正弦定理,余弦定理,二倍角的正弦函数公式在解三角形中的应用,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{5}}}{5}$ | B. | $\frac{{4\sqrt{17}}}{17}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{6}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com