·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʺ͵㣨1£¬$\frac{2\sqrt{2}}{3}$£©ÔÚÍÖÔ²ÉÏ£¬½áºÏÒþº¬Ìõ¼þÁÐʽÇóµÃa£¬bµÄÖµ£¬ÔòÍÖÔ²CµÄ±ê×¼·½³Ì¿ÉÇó£»
£¨2£©£¨i£©Ö±ÏßlµÄ·½³ÌΪy=k£¨x+3£©£¬ÓëÍÖÔ²ÁªÁ¢£¬µÃ£¨1+9k2£©x2+54k2x+81k2-9=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢Ö±Ïß´¹Ö±£¬½áºÏÌâÒâÄÜÇó³ö½á¹û£»
£¨ii£©OMµÄ·½³Ì¿ÉÉèΪy=kx£¬ÓëÍÖÔ²ÁªÁ¢µÃMµãµÄºá×ø±êΪx=¡À$\frac{3}{\sqrt{1+9{k}^{2}}}$£¬ÓÉOM¡Îl£¬°Ñ$\frac{|AD|+|AE|}{|OM|}$ת»¯ÎªµãµÄºá×ø±êµÄ¹ØÏµÇóµÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬$\left\{\begin{array}{l}{\frac{c}{a}=\frac{2\sqrt{2}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{1}{{a}^{2}}+\frac{8}{9{b}^{2}}=1}\end{array}\right.$£¬½âµÃ£ºa2=9£¬b2=1£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{9}+{y}^{2}=1$£»
£¨2£©£¨i£©Ö±ÏßlµÄ·½³ÌΪy=k£¨x+3£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x+3£©}\\{\frac{{x}^{2}}{9}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+9k2£©x2+54k2x+81k2-9=0£¬
¡àx1=-3£¬${x}_{2}=\frac{3-27{k}^{2}}{1+9{k}^{2}}$£®
µ±x=$\frac{3-27{k}^{2}}{1+9{k}^{2}}$ʱ£¬y=k£¨$\frac{3-27{k}^{2}}{1+9{k}^{2}}$+3£©=$\frac{6k}{1+9{k}^{2}}$£¬
¡àD£¨$\frac{3-27{k}^{2}}{1+9{k}^{2}}$£¬$\frac{6k}{1+9{k}^{2}}$£©£®
¡ßµãPΪADµÄÖе㣬¡àPµÄ×ø±êΪ£¨$\frac{-27{k}^{2}}{1+9{k}^{2}}£¬\frac{3k}{1+9{k}^{2}}$£©£¬
Ôò${k}_{OP}=-\frac{1}{9k}$£¨k¡Ù0£©£®
Ö±ÏßlµÄ·½³ÌΪy=k£¨x+3£©£¬Áîx=0£¬µÃEµã×ø±êΪ£¨0£¬3k£©£¬
¼ÙÉè´æÔÚ¶¨µãQ£¨m£¬n£©£¨m¡Ù0£©£¬Ê¹µÃOP¡ÍEQ£¬
ÔòkOPkEQ=-1£¬¼´-$\frac{1}{9k}$•$\frac{n-3k}{m}$=-1ºã³ÉÁ¢£¬
¡à£¨9m+3£©k-n=0ºã³ÉÁ¢£¬
¡à$\left\{\begin{array}{l}{9m+3=0}\\{-n=0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{m=-\frac{1}{3}}\\{n=0}\end{array}\right.$£¬
¡à¶¨µãQµÄ×ø±êΪ£¨-$\frac{1}{3}$£¬0£©£®
£¨ii£©¡ßOM¡Îl£¬¡àOMµÄ·½³Ì¿ÉÉèΪy=kx£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}+{y}^{2}=1}\\{y=kx}\end{array}\right.$£¬µÃMµãµÄºá×ø±êΪx=¡À$\frac{3}{\sqrt{1+9{k}^{2}}}$£¬
ÓÉOM¡Îl£¬µÃ$\frac{|AD|+|AE|}{|OM|}$=$\frac{|{x}_{D}-{x}_{A}|+|{x}_{E}-{x}_{A}|}{|{x}_{M}|}$
=$\frac{{x}_{D}-2{x}_{A}}{|{x}_{M}|}$=$\frac{\frac{3-27{k}^{2}}{1+9{k}^{2}}+6}{\frac{3}{\sqrt{1+9{k}^{2}}}}$=$\frac{3+9{k}^{2}}{\sqrt{1+9{k}^{2}}}$=$\sqrt{1+9{k}^{2}}+\frac{2}{\sqrt{1+9{k}^{2}}}$$¡Ý2\sqrt{2}$£®
µ±ÇÒ½öµ±$\sqrt{1+9{k}^{2}}=\frac{2}{\sqrt{1+9{k}^{2}}}$£¬¼´k=¡À$\frac{1}{3}$ʱȡµÈºÅ£¬
k=-$\frac{1}{3}$£¨ÉáÈ¥£©£®
¡àµ±k=$\frac{1}{3}$ʱ£¬$\frac{|AD|+|AE|}{|OM|}$µÄ×îСֵΪ$2\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄ¶¨µãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬¿¼²é´úÊýʽµÄ×îСֵµÄÇ󷨣¬×¢ÒâΤ´ï¶¨Àí¡¢Ö±Ïß´¹Ö±¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨x£©£¼x£¼x1 | B£® | x£¼x1£¼f£¨x£© | C£® | x£¼f£¨x£©£¼x1 | D£® | x£¼x2£¼f£¨x£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6 | B£® | 15 | C£® | 20 | D£® | 28 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{5}$ | B£® | $\frac{2}{5}$ | C£® | $\frac{3}{5}$ | D£® | $\frac{4}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬4] | B£® | £¨$\frac{1}{2}$£¬1] | C£® | £¨0£¬$\frac{1}{2}$] | D£® | £¨-¡Þ£¬$\frac{1}{2}$] |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com