12£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{2\sqrt{2}}{3}$£¬Çҵ㣨1£¬$\frac{2\sqrt{2}}{3}$£©ÔÚÍÖÔ²ÉÏ£¬¾­¹ýÍÖÔ²µÄ×ó¶¥µãA×÷бÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl½»ÍÖÔ²CÓÚµãD£¬½»yÖáÓÚµãE£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªµãPΪÏß¶ÎADµÄÖе㣬OM¡Îl£¬²¢ÇÒOM½»ÍÖÔ²CÓÚµãM£®
£¨i£©ÊÇ·ñ´æÔÚµãQ£¬¶ÔÓÚÈÎÒâµÄk£¨k¡Ù0£©¶¼ÓÐOP¡ÍEQ£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨ii£©Çó$\frac{|AD|+|AE|}{|OM|}$µÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʺ͵㣨1£¬$\frac{2\sqrt{2}}{3}$£©ÔÚÍÖÔ²ÉÏ£¬½áºÏÒþº¬Ìõ¼þÁÐʽÇóµÃa£¬bµÄÖµ£¬ÔòÍÖÔ²CµÄ±ê×¼·½³Ì¿ÉÇó£»
£¨2£©£¨i£©Ö±ÏßlµÄ·½³ÌΪy=k£¨x+3£©£¬ÓëÍÖÔ²ÁªÁ¢£¬µÃ£¨1+9k2£©x2+54k2x+81k2-9=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢Ö±Ïß´¹Ö±£¬½áºÏÌâÒâÄÜÇó³ö½á¹û£»
£¨ii£©OMµÄ·½³Ì¿ÉÉèΪy=kx£¬ÓëÍÖÔ²ÁªÁ¢µÃMµãµÄºá×ø±êΪx=¡À$\frac{3}{\sqrt{1+9{k}^{2}}}$£¬ÓÉOM¡Îl£¬°Ñ$\frac{|AD|+|AE|}{|OM|}$ת»¯ÎªµãµÄºá×ø±êµÄ¹ØÏµÇóµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬$\left\{\begin{array}{l}{\frac{c}{a}=\frac{2\sqrt{2}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{1}{{a}^{2}}+\frac{8}{9{b}^{2}}=1}\end{array}\right.$£¬½âµÃ£ºa2=9£¬b2=1£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{9}+{y}^{2}=1$£»
£¨2£©£¨i£©Ö±ÏßlµÄ·½³ÌΪy=k£¨x+3£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x+3£©}\\{\frac{{x}^{2}}{9}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+9k2£©x2+54k2x+81k2-9=0£¬
¡àx1=-3£¬${x}_{2}=\frac{3-27{k}^{2}}{1+9{k}^{2}}$£®
µ±x=$\frac{3-27{k}^{2}}{1+9{k}^{2}}$ʱ£¬y=k£¨$\frac{3-27{k}^{2}}{1+9{k}^{2}}$+3£©=$\frac{6k}{1+9{k}^{2}}$£¬
¡àD£¨$\frac{3-27{k}^{2}}{1+9{k}^{2}}$£¬$\frac{6k}{1+9{k}^{2}}$£©£®
¡ßµãPΪADµÄÖе㣬¡àPµÄ×ø±êΪ£¨$\frac{-27{k}^{2}}{1+9{k}^{2}}£¬\frac{3k}{1+9{k}^{2}}$£©£¬
Ôò${k}_{OP}=-\frac{1}{9k}$£¨k¡Ù0£©£®
Ö±ÏßlµÄ·½³ÌΪy=k£¨x+3£©£¬Áîx=0£¬µÃEµã×ø±êΪ£¨0£¬3k£©£¬
¼ÙÉè´æÔÚ¶¨µãQ£¨m£¬n£©£¨m¡Ù0£©£¬Ê¹µÃOP¡ÍEQ£¬
ÔòkOPkEQ=-1£¬¼´-$\frac{1}{9k}$•$\frac{n-3k}{m}$=-1ºã³ÉÁ¢£¬
¡à£¨9m+3£©k-n=0ºã³ÉÁ¢£¬
¡à$\left\{\begin{array}{l}{9m+3=0}\\{-n=0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{m=-\frac{1}{3}}\\{n=0}\end{array}\right.$£¬
¡à¶¨µãQµÄ×ø±êΪ£¨-$\frac{1}{3}$£¬0£©£®
£¨ii£©¡ßOM¡Îl£¬¡àOMµÄ·½³Ì¿ÉÉèΪy=kx£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}+{y}^{2}=1}\\{y=kx}\end{array}\right.$£¬µÃMµãµÄºá×ø±êΪx=¡À$\frac{3}{\sqrt{1+9{k}^{2}}}$£¬
ÓÉOM¡Îl£¬µÃ$\frac{|AD|+|AE|}{|OM|}$=$\frac{|{x}_{D}-{x}_{A}|+|{x}_{E}-{x}_{A}|}{|{x}_{M}|}$
=$\frac{{x}_{D}-2{x}_{A}}{|{x}_{M}|}$=$\frac{\frac{3-27{k}^{2}}{1+9{k}^{2}}+6}{\frac{3}{\sqrt{1+9{k}^{2}}}}$=$\frac{3+9{k}^{2}}{\sqrt{1+9{k}^{2}}}$=$\sqrt{1+9{k}^{2}}+\frac{2}{\sqrt{1+9{k}^{2}}}$$¡Ý2\sqrt{2}$£®
µ±ÇÒ½öµ±$\sqrt{1+9{k}^{2}}=\frac{2}{\sqrt{1+9{k}^{2}}}$£¬¼´k=¡À$\frac{1}{3}$ʱȡµÈºÅ£¬
k=-$\frac{1}{3}$£¨ÉáÈ¥£©£®
¡àµ±k=$\frac{1}{3}$ʱ£¬$\frac{|AD|+|AE|}{|OM|}$µÄ×îСֵΪ$2\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄ¶¨µãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬¿¼²é´úÊýʽµÄ×îСֵµÄÇ󷨣¬×¢ÒâΤ´ï¶¨Àí¡¢Ö±Ïß´¹Ö±¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Éè¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¨a£¾0£©£¬x1£¬x2Ϊº¯Êýy=f£¨x£©-xµÄÁ½¸öÁãµã£¬ÇÒÂú×ã0£¼x1£¼x2£¼$\frac{1}{a}$£®µ±x¡Ê£¨0£¬x1£©Ê±£¬Ôò£¨¡¡¡¡£©
A£®f£¨x£©£¼x£¼x1B£®x£¼x1£¼f£¨x£©C£®x£¼f£¨x£©£¼x1D£®x£¼x2£¼f£¨x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÈçͼËùʾµÄ³ÌÐò¿òͼÖУ¬x¡Ê[-2£¬2]£¬ÔòÄÜÊä³öxµÄ¸ÅÂÊΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¸÷Ïî¾ù²»Îª0µÄµÈ²îÊýÁÐ{an}Âú×㣺an-2016+an+2016-an2=0£¨n¡ÊN*£¬n¡Ý2£©£¬¼Ç¸ÃÊýÁеÄǰnÏî»ýΪTn£¬ÔòT5=32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¶þÏîʽ£¨x-$\frac{1}{x}$£©6µÄÕ¹¿ªÊ½ÖÐx-2µÄϵÊýΪ£¨¡¡¡¡£©
A£®6B£®15C£®20D£®28

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£¬Ôڱ߳¤Îª1µÄÕý·½ÐÎOABCÄÚȡһµãM£¬ÔòµãMÇ¡ºÃÂäÔÚÒõÓ°ÄÚ²¿µÄ¸ÅÂÊΪ$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®´Ó3ÃûÄÐÉúºÍ2ÃûÅ®ÉúÖÐÈÎÒâÍÆÑ¡2ÃûÑ¡ÊֲμӱçÂÛÈü£¬ÔòÍÆÑ¡³öµÄ2ÃûÑ¡ÊÖÇ¡ºÃÊÇ1ÄÐ1Å®µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{5}$B£®$\frac{2}{5}$C£®$\frac{3}{5}$D£®$\frac{4}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$£¬Ôò½ÇAµÈÓÚ$\frac{¦Ð}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª¼¯ºÏA={x|x2-x-2£¼0}£¬B={x|x£¾log2m}£¬ÈôA⊆B£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬4]B£®£¨$\frac{1}{2}$£¬1]C£®£¨0£¬$\frac{1}{2}$]D£®£¨-¡Þ£¬$\frac{1}{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸