精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2+x-6y+m=0与直线x+2y-3=0交于P,Q两点,以PQ为直径的圆经过圆点,求圆C的圆心和半径.
考点:直线与圆相交的性质
专题:直线与圆
分析:把圆的方程和直线的方程联立方程组,利用韦达定理,再根据
OP
OQ
=x1x2+y1y2=0,求得m的值,可得圆C的圆心和半径.
解答: 解:设P(x1,y1),Q(x2,y2),由题意可得OP⊥OQ,即
OP
OQ
=0.
x+2y-3=0
x2+y2+x-6y+m=0
可得:5x2+2x+4m-27=0,∴x1+x2=-2,x1•x2=
4m-27
5

再根据
OP
OQ
=x1x2+y1y2=x1x2+
1
4
(3-x1)(3-x2)=
5
4
 x1x2-
3
4
(x1+x2)+
9
4
=0,
结合前面根与系数关系表达式,代入得:
5
4
4m-27
5
+
3
2
+
9
4
=0,解之得m=3.
故圆C:x2+y2+x-6y+3=0 即 (x-
1
2
)
2
+(y-3)2=
25
4
,故圆心为(
1
2
,3),半径为
5
2
点评:本题给出直线与圆相交于点P、Q,并且以PQ为直径的圆恰好经过坐标原点O,求参数的值.着重考查了直线方程、圆的方程和直线与圆的位置关系等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l经过点P(1,1),倾斜角α=
π
3

(1)写出直线l的参数方程;
(2)设l与圆C:
x=2cosθ
y=2sinθ
(θ为参数)相交于点A、B,求点P到A、B两点的距离之积|PA|•|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-x+lnx(a>0).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线斜率为2,求a的值及在该点处的切线方程;
(Ⅱ)若f(x)是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:0.5lg7•7lg2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列的前三项为a,2a+2,3a+3,问这个数列的第几项的值为-
81
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列
1
1×2
1
2×3
1
3×4
,…,
1
n(n+1)
,…Sn为其前n项和.
(1)计算S1,S2,S3,由此推测计算Sn的公式.
(2)用数学归纳法证明你所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如图所示算法语句,将输出的A值依次分别记为a1,a2,…,an,…,a2014
(1)求数列{an}的通项公式;
(2)令bn=
22n-1
anan+1
,若数列{bn}的前n项和Sn,证明:对于任意的n∈N*,Sn
1
3
(n∈N*,n≤2014)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(正常数a≠1),cn=
1
an+1
-
1
an+1-1

(1)求{an}的通项公式;
(2)设bn=an2+Sn•an,若数列{bn}为等比数列,求a的值;
(3)在满足条件(2)的情形下,cn=
1
an+1
-
1
an+1-1
,数列{cn}的前n项和为Tn,求证:Tn>2n-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a比b长2,b比c长2,且最大角的正弦值是sinx=
3
2
,求△ABC的面积.

查看答案和解析>>

同步练习册答案