精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2-x+lnx(a>0).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线斜率为2,求a的值及在该点处的切线方程;
(Ⅱ)若f(x)是单调函数,求a的取值范围.
考点:利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)求函数的导数,根据导数的几何意义即可求a的值及在该点处的切线方程;
(Ⅱ)根据函数是单调函数,则导数的符号相同,建立条件关系即可得到结论.
解答: 解:(Ⅰ)f′(x)=2ax-1+
1
x
.…(2分)
由题设,f′(1)=2a=2,a=1,
此时f(1)=0,切线方程为y=2(x-1),
即2x-y-2=0.…(5分)
(Ⅱ)f′(x)=
2ax2-x+1
x

当a≥
1
8
时,△=1-8a≤0,f′(x)≥0,
f(x)在(0,+∞)单调递增.…(9分)
当0<a<
1
8
时,△>0,方程2ax2-x+1=0有两个不相等的正根
x1=
1-
1-8a
4a
,x2=
1+
1-8a
4a

当x∈(0,x1)∪(x2,+∞)时,f(x)>0,当x∈(x1,x2)时,f(x)<0,
这时f (x)不是单调函数.
综上,a的取值范围是[
1
8
,+∞).…(12分)
点评:本题主要考查主要考查导数的应用,要求熟练掌握导数的几何意义,以及函数单调性和导数之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x-y=0上,则
sin(
2
+θ)+2cos(π-θ)
sin(
π
2
-θ)-sin(π-θ)
等于(  )
A、-
3
2
B、
3
2
C、0
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=3
e1
-2
e2
b
=4
e1
-
e2
,其中
e1
=(1,0),
e2
=(0,1).
(1)求:
a
b

(2)求:|
a
+
b
|及
a
b
的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=-2n+11.
(1)数列{an}的前几项和最大;
(2)如果bn=|an|(n∈N),求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B两点在河的两岸,一测量者在A的同侧所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,算出A、B两点的距离为
 
m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2-2x-3≥0},B={x|x2-x-12≤0},C={x|2m-1≤x≤m+1}
(1)求A∩B;
(2)若B∩C=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+x-6y+m=0与直线x+2y-3=0交于P,Q两点,以PQ为直径的圆经过圆点,求圆C的圆心和半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点M(0,-2)为单位圆x2+y2=1外一点,N为单位圆上任意一点,∠MON的平分线交MN于Q,求点Q的轨迹方程.

查看答案和解析>>

同步练习册答案