精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{1}{2}$mx2-2x+lnx在定义域内是增函数,则实数m的取值范围是(  )
A.[-1,1]B.[-1,+∞)C.[1,+∞)D.(-∞,1]

分析 函数f(x)是增函数?f′(x)=mx+$\frac{1}{x}$-2≥0?m≥$\frac{2}{x}$-$\frac{1}{{x}^{2}}$都成立,利用导数即可得出.

解答 解:∵函数f(x)=$\frac{1}{2}$mx2+lnx-2x在定义域(x>0)内是增函数,
∴f′(x)=mx+$\frac{1}{x}$-2≥0,化为m≥$\frac{2}{x}$-$\frac{1}{{x}^{2}}$.
令g(x)=$\frac{2}{x}$-$\frac{1}{{x}^{2}}$,
g′(x)=-$\frac{1}{{x}^{2}}$+$\frac{2}{{x}^{3}}$=-$\frac{2(x-1)}{{x}^{3}}$,解g′(x)>0,得0<x<1;解g′(x)<0,得x>1.
因此当x=1时,g(x)取得最大值,g(1)=1.
∴m≥1.
故实数m的取值范围是[1,+∞),
故选:C.

点评 正确把问题等价转化、利用导数研究函数的单调性、极值与最值是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知定义在(0,+∞)上的函数f(x),满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,有f(x)>0.
①求证:f($\frac{m}{n}$)=f(m)-f(n);
②求证:f(x)在(0,+∞)上是增函数;
③比较f($\frac{m+n}{2}$)与$\frac{f(m)+f(n)}{2}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{2\sqrt{5}}{5}$,它的一个顶点恰好是抛物线y=$\frac{1}{4}$x2的焦点,
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若$\overrightarrow{MA}$=λ1$\overrightarrow{AF}$,$\overrightarrow{MB}$=λ2$\overrightarrow{BF}$,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{3x+1}{x-2}$的值域为{y∈R|y≠3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.i是虚数单位,$\frac{5i}{2-i}$的虚部为(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x≤-3}\\{2x,x>-3}\end{array}\right.$且f(x0)=8,则x0=4,f(x)的值域为(-6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法中错误的是(  )
A.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为4,15,26,37,48的同学均被选出,则该班学生人数可能为55
B.“x<0”是“ln(x+1)<0”的必要不充分条件
C.“?x≥2,x2-3x+2≥0”的否定是?x<2,x2-3x+2<0
D.x<3是-1<x<3的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知${a_n}={2^{n-2}}$,数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),则$\left\{{\frac{1}{b_n}}\right\}$的前n项和为$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若0<a<b<1,则在ab,ab,logba这三个数中最大的一个是logba.

查看答案和解析>>

同步练习册答案