精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x≤-3}\\{2x,x>-3}\end{array}\right.$且f(x0)=8,则x0=4,f(x)的值域为(-6,+∞).

分析 当x0≤-3时,${{x}_{0}}^{2}+2=8$,当x0>-3时,2x0=8,由此能求出f(x0)=8时,x0的值.当x≤-3时,f(x)=x2+2≥11,当x>-3时,f(x)=2x>-6.由此能求出f(x)的值域.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x≤-3}\\{2x,x>-3}\end{array}\right.$,且f(x0)=8,
∴当x0≤-3时,${{x}_{0}}^{2}+2=8$,解得${x}_{0}=±\sqrt{6}$,不成立;
当x0>-3时,2x0=8,解得x0=4,成立.
∴f(x0)=8时,x0=4.
当x≤-3时,f(x)=x2+2≥11,
当x>-3时,f(x)=2x>-6.
∴f(x)的值域为(-6,+∞).
故答案为:4,(-6,+∞).

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合A={x||x|<3},B={-1,0,1,2,3,4},则A∩B=(  )
A.{0,1,2}B.{0,1,2,3}C.{-1,0,1,2}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设二次函数f(x)=ax2-2x+c(x∈R)的值域为[0,+∞),则$\frac{1}{c+1}$+$\frac{4}{a+4}$的最大值为(  )
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{5}{4}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在△ABC中,角A,B,C对应的边分别为a,b,c,且a=2,b=3,cosB=$\frac{1}{3}$.
(1)求边c的值;
(2)求cos(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{1}{2}$mx2-2x+lnx在定义域内是增函数,则实数m的取值范围是(  )
A.[-1,1]B.[-1,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简$\frac{tan12°-\sqrt{3}}{sin12°cos24°}$=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a=log${\;}_{\frac{1}{2}}$3,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=($\frac{1}{2}$)0.3,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A(-1,0),B(2,3),则|AB|=(  )
A.3B.$\sqrt{2}$C.$3\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的函数f(x),对任意x∈R都有f(x)•f(x+1)=1,当x∈(-2,0)时,f(x)=4x,则f(2013)=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案