精英家教网 > 高中数学 > 题目详情
15.定义在R上的函数f(x),对任意x∈R都有f(x)•f(x+1)=1,当x∈(-2,0)时,f(x)=4x,则f(2013)=$\frac{1}{4}$.

分析 根据条件得到f(x+2)=f(x),利用函数的周期性,将条件进行转化即可得到结论.

解答 解:对任意x∈R都有f(x)•f(x+1)=1,可得f(x+2)=$\frac{1}{f(x+1)}$=f(x),
∴f(x+2)=f(x),
函数f(x)是定义在R上是周期函数周期为2,
当x∈(-2,0)时,f(x)=4x,则f(2013)=f(1007×2-1)=f(-1)=4-1=$\frac{1}{4}$
故答案为:$\frac{1}{4}$.

点评 本题主要考查函数值的计算,根据函数周期性进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x≤-3}\\{2x,x>-3}\end{array}\right.$且f(x0)=8,则x0=4,f(x)的值域为(-6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.由于我市去年冬天多次出现重度污染天气,市政府决定从今年3月份开始进行汽车尾气的整治,为降低汽车尾气的排放量,我市某厂生产了甲、乙两种不同型号的节排器,分别从两种节排器中随机抽取200件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.

节排器等级如表格所示
综合得分K的范围节排器等级
K≥85一级品
75≤k<85二级品
70≤k<75三级品
若把频率分布直方图中的频率视为概率,则
(1)如果从甲型号中按节排器等级用分层抽样的方法抽取10件,然后从这10件中随机抽取3件,求至少有2件一级品的概率;
(2)如果从乙型号的节排器中随机抽取3件,求其二级品数X的分布列及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,sinA:sinB:sinC=3:7:5,则△ABC最大的角为120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若0<a<b<1,则在ab,ab,logba这三个数中最大的一个是logba.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,半圆O的直径为1,A为直径延长线上的一点,OA=1,B为半圆上任意一点,以AB为一边作等边三角形ABC,则四边形OACB面积的最大值为$\frac{5\sqrt{3}}{16}$+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=kx-$\sqrt{4-{x^2}}$+3-2k有两个零点x1,x2,则k+|x1-x2|的取值范围是$(\frac{5}{12},\frac{331}{100}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合M={x∈N|x(x+2)≤0}的子集个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设p:?x∈R,x2-4x+m>0,q:函数f(x)=-$\frac{1}{3}$x3-2x2-mx-1在R上是减函数,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案