精英家教网 > 高中数学 > 题目详情
10.若0<a<b<1,则在ab,ab,logba这三个数中最大的一个是logba.

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵0<a<b<1,则ab<1,ab<1,logba>logbb=1.
这三个数中最大的一个是logba.
故答案为:logba.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{1}{2}$mx2-2x+lnx在定义域内是增函数,则实数m的取值范围是(  )
A.[-1,1]B.[-1,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P(2,0),点N到原点O与到点M(3,0)的距离之比为$\frac{1}{2}$,点N的轨迹为曲线C.
(1)求过点P且与曲线C相切的直线的方程;
(2)若过原点O的直线l与曲线C相交于不同的两点A,B,求△PAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若a=2bsinA,则B为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等差数列{an}的前n项和为Sn,若S1、a3、S3成等差数列,且a2+a3+a4=15,若Sn-1600≥0,则n的最小值为40.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的函数f(x),对任意x∈R都有f(x)•f(x+1)=1,当x∈(-2,0)时,f(x)=4x,则f(2013)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=xlnx+8在区间(0,3]的极小值为-$\frac{1}{e}$+8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将一枚骰子连续抛掷两次,得到向上的点数第一次为m,第二次为n.
(Ⅰ) 求m+n=6的概率;
(Ⅱ)求方程x2+mx+n=0有两个不相等实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}$(θ为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为:ρsin(θ+$\frac{π}{4}}$)=1.直线l与曲线C相交于点A,B.
(1)求直线l的直角坐标方程;
(2)求|AB|.

查看答案和解析>>

同步练习册答案