【题目】在直三棱柱中,,,D为线段AC的中点.
(1)求证::
(2)求直线与平面所成角的余弦值;
(3)求二面角的余弦值.
【答案】(1)见解析;(2);(3)
【解析】
(1)由直三棱柱的定义可得,再根据等腰三角形性质可得,再由线面垂直的判定可得平面,即可证明.
(2)取线段的中点为,分别取作为轴,轴,轴,建立空间直角坐标系,写出各个点的坐标,利用向量数量积运算求得平面BC1D的法向量,即可由线面夹角的求法求得直线与平面所成角的余弦值.
(3)由平面BC1D的法向量和平面的法向量,即可利用法向量法求得二面角的余弦值.
(1)证明:由直三棱柱,可得底面,
∴.
∵,D为线段的中点.
∴,又,
∴平面,
∴.
(2)取线段的中点为,分别取作为轴,轴,轴,建立空间直角坐标系,如下图所示:
,
,,,
设平面BC1D的法向量为,
则,代入可得,令可得
即.
∴直线与平面所成角的余弦值
||.
(3),,.
设平面的法向量为,
则,代入可得,令,解得
即.
∴.
由图可知,二面角为锐二面角
∴二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD为梯形,AB∥CD,∠DAB=90°,BDD1B1为矩形,平面BDD1B1⊥平面ABCD,又AB=AD=BB1=1,CD=2.
(1)证明:CB1⊥AD1;
(2)求B1到平面ACD1的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C:的右焦点为F,过点F的直线l与椭圆交于A、B两点,直线n:x=4与x轴相交于点E,点M在直线n上,且满足BM∥x轴.
(1)当直线l与x轴垂直时,求直线AM的方程;
(2)证明:直线AM经过线段EF的中点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com