精英家教网 > 高中数学 > 题目详情
植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为(  )米.
A、1800B、2000
C、2200D、2400
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:设在第n颗树旁放置所有树苗,利用等差数列求和公式,得出领取树苗往返所走的路程总和f(n)的表达式,再利用二次函数求最值的公式,求出这个最值.
解答: 解:记公路一侧所植的树依次记为第1颗、第2颗、第3颗、…、第20颗,
设在第n颗树旁放置所有树苗,领取树苗往返所走的路程总和为f(n) (n为正整数),
1
2
f(n)=[10+20+…+10(n-1)]+[10+20+…+10(20-n)]
=10[1+2+…+(n-1)]+10[1+2+…+(20-n)]
=5(n2-n)+5(20-n)(21-n)
=5(n2-n)+5(n2-41n+420)
=10n2-210n+2100,
∴f(n)=20(n2-21n+210),相应的二次函数图象关于n=10.5对称,
结合n为整数,可得当n=10或11时,f(n)的最小值为2000米.
故答案为:2000
点评:本题考查等差数列求和公式,根据题意建立函数模型,再用二次函数来解题,属于常见题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C所对边分别为a,b,c,当∠B=120°,a=1,b=
3
时符合条件的三角形有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-1
x+1
,则f(x)(  )
A、在(-∞,0)上单调递增
B、在(0,+∞)上单调递增
C、在(-∞,0)上单调递减
D、在(0,+∞)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、甲乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样
B、期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好
C、期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好
D、期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lgx+x-3的零点所在区间是(  )
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的面数有(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an},Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是(  )
A、d<0
B、S9>S5
C、a7=0
D、S6与S7是Sn的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足
2x+y≤4
x-y≥-1
x≤a(y+1)
,则z=x+y的最小值为-7,a=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

以下各点在不等式组
x+y>0
x-2y+2<0
表示的平面区域的是(  )
A、(1,1)
B、(-1,1)
C、(2,2)
D、(3,3)

查看答案和解析>>

同步练习册答案