精英家教网 > 高中数学 > 题目详情
10.Sn为数列{an}的前n项和,已知Sn=n2(n∈N).
(1)求数列{an}的通项公式;
(2)记bn=an•2n(n∈N),求数列{bn}的前n项和Tn

分析 (1)根据n≥2时,an=Sn-Sn-1的关系即可求数列{an}的通项公式;
(2)求出bn=an•2n(n∈N),利用错位相减法即可求数列{bn}的前n项和Tn

解答 解:(1)n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
 n=1时,a1=S1=1符合上式,
 故an=2n-1(n∈N+);                   
  (2)∵bn=an•2n(n∈N),
∴bn=(2n-1)•2n
则数列{bn}的前n项和Tn满足:
Tn=1•2+3•22+5•23+…+(2n-1)•2n,…①
2Tn=1•22+3•23+5•24+…+(2n-1)•2n+1…②
①-②得-Tn=2+2(22+23+…+2n)-(2n-1)•2n+1=2+2•$\frac{4-{2}^{n+1}}{1-2}$-(2n-1)•2n+1=(3-2n)•2n+1-6,
∴Tn=(2n-3)•2n+1+6.

点评 本题主要考查数列通项公式以及数列求和的计算,根据n≥2时,an=Sn-Sn-1的关系以及利用错位相减法进行求和是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足:a1=1,an+1=$\sqrt{{a}_{n}^{2}-2{a}_{n}+3}$+b(n∈N*).
(1)若b=1,求证数列{(an-1)2}是等差数列;
(2)若b=-1,求证:a1+a3+…+a2n-1<$\frac{3n+4}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知θ∈($\frac{π}{4}$,$\frac{π}{2}$),在单位圆中角θ的正弦线、余弦线、正切线的长度分别a,b,c,则它们的大小关系是(  )
A.a>b>cB.c>a>bC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.现有长分别为1m、2m、3m的钢管各3根(每根钢管质地均匀、粗细相同附有不同的编号),从中随机抽取2根(假设各钢管被抽取的可能性是均等的),再将抽取的钢管相接焊成笔直的一根.若X表示新焊成的钢管的长度(焊接误差不计).
(1)求X的分布列;
(2)若Y=-λ2X+λ+1,E(Y)>1,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.执行如图所示的程序框图,若输出的i的值为8,则判断框内实数a的取值范围是[-4,6).(写成区间或集合的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知方程8x2+6kx+2k+1=0有两个实根sinθ和cosθ,则k=-$\frac{10}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.现有语文、数学课本共7本(其中语文课本不少于2本),从中任取2本,至多有1本语文课本的概率是$\frac{5}{7}$,则语文课本有(  )
A.2本B.3本C.4本D.5本

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知tanα=$\frac{1}{2}$,tan(α-β)=-$\frac{5}{2}$,则tan(β-2α)的值为(  )
A.-$\frac{3}{4}$B.-$\frac{8}{9}$C.$\frac{3}{4}$D.$\frac{8}{9}$

查看答案和解析>>

同步练习册答案