精英家教网 > 高中数学 > 题目详情
19.现有语文、数学课本共7本(其中语文课本不少于2本),从中任取2本,至多有1本语文课本的概率是$\frac{5}{7}$,则语文课本有(  )
A.2本B.3本C.4本D.5本

分析 设语文课本有x本,则数学课本有7-x本,由题意利用互斥事件概率加法公式列出方程,求出语文课本的数量.

解答 解:∵现有语文、数学课本共7本(其中语文课本不少于2本),
从中任取2本,至多有1本语文课本的概率是$\frac{5}{7}$,
∴设语文课本有x本,则数学课本有7-x本,
$\frac{{C}_{x}^{1}{C}_{7-x}^{1}}{{C}_{7}^{2}}$+$\frac{{C}_{7-x}^{2}}{{C}_{7}^{2}}$=$\frac{5}{7}$,
整理,得x2-x-12=0,
解得x=-3(舍)或x=4.
∴语文课本有4本.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率加法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD的底面是矩形,△PAD为等边三角形,且平面PAD⊥平面ABCD,E,F分别为PC和BD的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)证明:平面PDC⊥平面PAD;
(Ⅲ)若矩形ABCD的周长为6,设AD=x,当x为何值时,四棱锥P-A BCD的体积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.Sn为数列{an}的前n项和,已知Sn=n2(n∈N).
(1)求数列{an}的通项公式;
(2)记bn=an•2n(n∈N),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设等差数列{an}的前n项和为Sn,公差为d,已知S2,S3+1,S4成等差数列.
(1)求d的值;
(2)令bn=$\frac{{S}_{n}}{n}$,记{bn}的前n项和为Tn,若$\frac{{S}_{n}}{{T}_{n}}$=2,求a1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.关于x的不等式x2-ax+4>0在(0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知(x2-3x+2)4=x8+a1x7+…+a6x2+a7x+a8,则a6+a8=264.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}是等比数列,其前n项的和为Sn,a1+2a2=0,S4-S2=$\frac{1}{8}$.求an,Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数y=$\frac{2x+k}{x-2}$在(3,+∞)上单调递增,则实数k的取值范围是(-∞,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设两个向量$\overrightarrow{a}$=(λ+2,λ2-cos2θ),$\overrightarrow{b}$=(μ,$\frac{μ}{2}$+sinθ),其中λ,μ,θ∈R,若$\overrightarrow{a}$=2$\overrightarrow{b}$,则$\frac{λ}{μ}$的最小值为-6.

查看答案和解析>>

同步练习册答案