精英家教网 > 高中数学 > 题目详情
11.已知数列{an}是等比数列,其前n项的和为Sn,a1+2a2=0,S4-S2=$\frac{1}{8}$.求an,Sn的表达式.

分析 根据条件建立方程关系求出公比q和首项,即可得到结论.

解答 解:∵a1+2a2=0,
∴a1=-2a2
则q=$\frac{{a}_{2}}{{a}_{1}}$=$\frac{{a}_{2}}{-2{a}_{2}}$=$-\frac{1}{2}$,
∵S4-S2=$\frac{1}{8}$.
∴a4+a3=$\frac{1}{8}$.
即a1(q3+q2)=$\frac{1}{8}$.
即a1[($-\frac{1}{2}$)3+($-\frac{1}{2}$)2]=$\frac{1}{8}$.
则$\frac{1}{8}$a1=$\frac{1}{8}$.
得a1=1,
则an=a1qn-1=($-\frac{1}{2}$)n-1
Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{1-(-\frac{1}{2})^{n}}{1-(-\frac{1}{2})}$=$\frac{2}{3}$-$\frac{2}{3}$($-\frac{1}{2}$)n

点评 本题主要考查等比数列通项公式和前n项和公式的计算,根据条件建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知方程8x2+6kx+2k+1=0有两个实根sinθ和cosθ,则k=-$\frac{10}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.现有语文、数学课本共7本(其中语文课本不少于2本),从中任取2本,至多有1本语文课本的概率是$\frac{5}{7}$,则语文课本有(  )
A.2本B.3本C.4本D.5本

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以Ox轴为始边作两个钝角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为-$\frac{\sqrt{2}}{10}$,-$\frac{2\sqrt{5}}{5}$.
(1)求tan(α+β)的值;
(2)求α+2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数y=Asin(ωx+φ)(A>0,ω>0)的一段图象如图所示:
(1)求出函数的解析式;
(2)求函数单调增区间;
(3)当x为何值时,y取最大值?当x取何值时,y取零?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知(ax+b)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,若a0=1,a1=10,则a2等于(  )
A.10B.20C.40D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知tanα=$\frac{1}{2}$,tan(α-β)=-$\frac{5}{2}$,则tan(β-2α)的值为(  )
A.-$\frac{3}{4}$B.-$\frac{8}{9}$C.$\frac{3}{4}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四个命题中正确的是(  )
A.若直线l∥平面α,直线l∥平面β,则α∥β
B.若直线l⊥平面α,平面α⊥平面β,则l∥平面β
C.“两直线l1,l2,与同一平面α所成角相等”的充分不必要条件是“l1∥l2
D.若直线l上不同两点A,B到平面α的距离相等,则l∥α.

查看答案和解析>>

同步练习册答案