精英家教网 > 高中数学 > 题目详情
11.如图所示,已知几何体ABCD-A1B1C1D1是平行六面体.
(1)化简$\frac{1}{2}$$\overrightarrow{A{A}_{1}}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{AB}$,并在图上标出结果;
(2)设M是底面ABCD的中心,N是侧面BCC1B1对角线BC1上的点,且C1N=$\frac{1}{4}$C1B,设$\overrightarrow{MN}$=α$\overrightarrow{AB}$+β$\overrightarrow{AD}$+γ$\overrightarrow{A{A}_{1}}$,求α,β,γ的值.

分析 (1)在几何体中作出向量$\frac{1}{2}$$\overrightarrow{A{A}_{1}}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{AB}$即可;
(2)根据空间图形,用向量$\overrightarrow{AB}$、$\overrightarrow{AD}$和$\overrightarrow{{AA}_{1}}$表示出$\overrightarrow{MN}$即可.

解答 解:(1)向量$\frac{1}{2}$$\overrightarrow{A{A}_{1}}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{AB}$,是在AB上截取AP=$\frac{2}{3}$AB,
过点P作PQ∥BC,交CD于点Q,
再过点Q作QR∥CC1,且QR=$\frac{1}{2}$CC1,连接AR,
则$\overrightarrow{AP}$=$\frac{2}{3}$$\overrightarrow{AB}$,$\overrightarrow{PQ}$=$\overrightarrow{BC}$,$\overrightarrow{QR}$=$\frac{1}{2}$$\overrightarrow{{AA}_{1}}$,
$\overrightarrow{AR}$=$\frac{1}{2}$$\overrightarrow{{AA}_{1}}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{AB}$,如图所示;

(2)M是底面ABCD的中心,N是侧面BCC1B1对角线BC1上的点,且C1N=$\frac{1}{4}$C1B,
∴$\overrightarrow{MN}$=$\overrightarrow{MB}$+$\overrightarrow{BN}$
=$\frac{1}{2}$$\overrightarrow{DB}$+$\frac{3}{4}$$\overrightarrow{{BC}_{1}}$
=$\frac{1}{2}$($\overrightarrow{DA}$+$\overrightarrow{DC}$)+$\frac{3}{4}$($\overrightarrow{{BB}_{1}}$+$\overrightarrow{BC}$)
=-$\frac{1}{2}$$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{{AA}_{1}}$+$\frac{3}{4}$$\overrightarrow{AD}$
=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AD}$+$\frac{3}{4}$$\overrightarrow{{AA}_{1}}$,
又$\overrightarrow{MN}$=α$\overrightarrow{AB}$+β$\overrightarrow{AD}$+γ$\overrightarrow{A{A}_{1}}$,
∴α=$\frac{1}{2}$,β=$\frac{1}{4}$,γ=$\frac{3}{4}$.

点评 本题考查了空间向量的线性表示与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若复数z满足(1-i2)z=1+i3,则z的虚部为(  )
A.0B.$\frac{1}{2}$C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某人上午7时,乘摩托艇从A港出发前往B港,所需时间x至少为3小时,至多为10小时,然后从B港乘汽车前往C市,所需时间y至少为2.5小时,至多为12.5小时,且要求到达C市的时间为同一天下午4时至9时之间,若从A港到C市所需要的经费ω=100+3(5-x)+2(8-y)元,则所需经费的最小值为93(元)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=k(x-1)+2与抛物线x2=4y的位置关系为(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将(1-$\frac{1}{{x}^{2}}$)n(n∈N+)的展开式中x-4的系数记为an,则$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2016}}$=$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,AD⊥平面APB,AD∥BC,AP⊥PB,R、S分别是线段AB、PC的中点.
(1)求证:RS∥平面PAD;
(2)若AB=BC=2AD=2AP,点Q在线段AB上,且BQ=3AQ,求证:平面DPQ⊥平面ADQ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:(x-3)2+y2=4,M是圆C的圆心,Q是y轴上的动点,QA,QB分别切圆C于A,B两点
(Ⅰ)若Q(0,2),求切线QA,QB的方程
(Ⅱ)求四边形QAMB面积的最小值
(Ⅲ)若|AB|=$\frac{8\sqrt{2}}{3}$,求直线MQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,若顶点B、C的坐标分别是(-a,0)和(a,0),其中a>0,G为△ABC的重心(三角形三条中线的交点),若|AG|=2,则点G的轨迹方程是(  )
A.x2+y2=1(y≠0)B.x2+y2=4(y≠0)C.x2+y2=9(y≠0)D.x2+y2=a2(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某校高二年级有10个班,若每个班有50名同学,均随机编号1,2,…50,为了了解他们对体育运动的兴趣,要求每班第15号同学留下来进行问卷调查,这里运用的抽样方法是(  )
A.抽签法B.系统抽样C.随机数表法D.有放问抽法

查看答案和解析>>

同步练习册答案