精英家教网 > 高中数学 > 题目详情
16.如图,AD⊥平面APB,AD∥BC,AP⊥PB,R、S分别是线段AB、PC的中点.
(1)求证:RS∥平面PAD;
(2)若AB=BC=2AD=2AP,点Q在线段AB上,且BQ=3AQ,求证:平面DPQ⊥平面ADQ.

分析 (1)取PB中点E,连结RE,SE,则可利用中位线定理证明SE∥平面ADP,RE∥平面ADP,故而平面SRE∥平面ADP,于是SR∥平面ADP;
(2)假设AQ=1,则可根据线段的长度关系得出AP=2,AB=4,从而由余弦定理求出PQ,利用勾股定理的逆定理证出PQ⊥AQ,根据AD⊥平面APB得AD⊥PQ,故而PQ⊥平面ADQ,从而平面DPQ⊥平面ADQ.

解答 证明:(1)取PB中点E,连结RE,SE,则SE是△PBC的中位线,RE是△APB的中位线,
∴SE∥BC,又∵AD∥BC,∴AD∥SE,
∵AD?平面ADP,SE?平面ADP,
∴SE∥平面ADP,
同理可得:RE∥平面ADP,
又∵SE?平面SRE,RE?平面SRE,SE∩RE=E,
∴平面SRE∥平面ADP,∵SR?平面SRE,
∴SR∥平面ADP.
(2)设AQ=1,∵AB=2AP,BQ=3AQ,
∴AB=4,AP=2,
∵AP⊥PB,∴cos∠PAB=$\frac{AP}{AB}$=$\frac{1}{2}$.∴PQ=$\sqrt{A{P}^{2}+A{Q}^{2}-2AP•AQcos∠PAB}$=$\sqrt{3}$.
∴AQ2+PQ2=AP2,∴PQ⊥AQ.
∵AD⊥平面APB,PQ?平面APB,∴AD⊥PQ,
又∵AD?平面ADQ,AQ?平面ADQ,AD∩AQ=A,
∴PQ⊥平面ADQ,∵PQ?平面PDQ,
∴平面DPQ⊥平面ADQ.

点评 本题考查了线面平行,面面垂直的判定,线面垂直的性质,寻找线段的垂直关系是解题关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}的公比q>1,a1=2,且a1,a2,a3-8成等差数列,数列{anbn}的前n项和为$\frac{(2n-1)•3^n+1}{2}$.
(1)分别求出数列{an}和{bn}的通项公式;
(2)设数列{$\frac{1}{a_n}$}的前n项和为Sn,已知?n∈N*,Sn≤m恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.两座灯塔A和B与海岸观察站C的距离都等于a海里,灯塔A在观测站C北偏东75°的方向上,灯塔B在观测站C的东南方向,则灯搭A和B之间的距离为(  )
A.a海里B.$\sqrt{2}$a海里C.$\sqrt{3}$a海里D.2a海里

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等腰直角三角形ABC中,AB=AC=1,点E为斜边BC的中点,点M在线段AB上运动,则($\overline{AE}$-$\overline{AM}$)•($\overline{AC}$-$\overline{AM}$)的取值范围是(  )
A.[$\frac{7}{16}$,$\frac{1}{2}$]B.[$\frac{7}{16}$,1]C.[$\frac{1}{2}$,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,已知几何体ABCD-A1B1C1D1是平行六面体.
(1)化简$\frac{1}{2}$$\overrightarrow{A{A}_{1}}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{AB}$,并在图上标出结果;
(2)设M是底面ABCD的中心,N是侧面BCC1B1对角线BC1上的点,且C1N=$\frac{1}{4}$C1B,设$\overrightarrow{MN}$=α$\overrightarrow{AB}$+β$\overrightarrow{AD}$+γ$\overrightarrow{A{A}_{1}}$,求α,β,γ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(x)=x2+(a2-1)x+6是偶函数,则a=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知单调递增数列{an}满足an=3n-λ•2n(其中λ为常数,n∈N+),则实数λ的取值范围是λ<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线E1,E2的极坐标方程分别为ρ=4cosθ,ρ•cos(θ-$\frac{π}{4}$)=4,绕极点将曲线E1逆时针旋转角α,α∈(0,$\frac{π}{2}$),得到曲线E3
(1)当α=$\frac{π}{6}$时,求曲线E3的极坐标方程;
(2)当E3与E2有且仅有一个公共点时,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若(1+x)(2-x)2015=a0+a1x+a2x2+…+a2015x2015+a2016x2016,则a2+a4+…+a2014+a2016等于-22015

查看答案和解析>>

同步练习册答案