精英家教网 > 高中数学 > 题目详情
7.两座灯塔A和B与海岸观察站C的距离都等于a海里,灯塔A在观测站C北偏东75°的方向上,灯塔B在观测站C的东南方向,则灯搭A和B之间的距离为(  )
A.a海里B.$\sqrt{2}$a海里C.$\sqrt{3}$a海里D.2a海里

分析 由方位角可得∠BCA=60°,判断出△ABC是等边三角形.

解答 解:∵∠NCA=75°,∠BCE=45°,∴∠BCA=60°,
∵AC=BC=a,∴△ABC是等边三角形,∴AB=a.
故选:A.

点评 本题考查了解三角形的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.抛物线y=4x2的准线方程为(  )
A.x=-1B.y=-1C.x=-$\frac{1}{16}$D.y=-$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=sinx(sinx+cosx)+cos2x.
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中,真命题的是(  )
A.若a>b,c>d,则a-c>b-dB.若a>b,c>d,则ac>bd
C.若$\frac{1}{a}$<$\frac{1}{b}$<0,则ab<b2D.若$\frac{b}{a}$>$\frac{b-1}{a-1}$,则a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某人上午7时,乘摩托艇从A港出发前往B港,所需时间x至少为3小时,至多为10小时,然后从B港乘汽车前往C市,所需时间y至少为2.5小时,至多为12.5小时,且要求到达C市的时间为同一天下午4时至9时之间,若从A港到C市所需要的经费ω=100+3(5-x)+2(8-y)元,则所需经费的最小值为93(元)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.抛物线y2=x的焦点F坐标为($\frac{1}{4}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=k(x-1)+2与抛物线x2=4y的位置关系为(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,AD⊥平面APB,AD∥BC,AP⊥PB,R、S分别是线段AB、PC的中点.
(1)求证:RS∥平面PAD;
(2)若AB=BC=2AD=2AP,点Q在线段AB上,且BQ=3AQ,求证:平面DPQ⊥平面ADQ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.把边长为2的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD.则异面直线AD,BC所成的角为60°.

查看答案和解析>>

同步练习册答案