分析 单调递增数列{an}满足an=3n-λ•2n(其中λ为常数,n∈N+),可得:an<an+1,化为:λ<$2×(\frac{3}{2})^{n}$,利用数列的单调性即可得出.
解答 解:∵单调递增数列{an}满足an=3n-λ•2n(其中λ为常数,n∈N+),
∴an<an+1,
∴3n-λ•2n<3n+1-λ•2n+1,
化为:λ<$2×(\frac{3}{2})^{n}$,
由于数列$\{2×(\frac{3}{2})^{n}\}$单调递增,∴$2×(\frac{3}{2})^{n}$≥$2×\frac{3}{2}$=3.
∴λ<3.
故答案为:λ<3.
点评 本题考查了递推关系的应用、数列的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1] | B. | (1,2] | C. | [$\frac{1}{2}$,2] | D. | (1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2+y2=1(y≠0) | B. | x2+y2=4(y≠0) | C. | x2+y2=9(y≠0) | D. | x2+y2=a2(y≠0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com