精英家教网 > 高中数学 > 题目详情
19.两圆x2+y2=9和x2+y2-18x+16y+45=0的公切线有(  )条.
A.1B.2C.3D.4

分析 把两圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距小于半径之和,可得两圆相交,由此可得两圆的公切线的条数.

解答 解:圆x2+y2=9表示以(0,0)为圆心,半径等于3的圆.
圆x2+y2-18x+16y+45=0,即(x-9)2+(y+8)2=100,表示以(9,-8)为圆心,半径等于10的圆.
两圆的圆心距等于$\sqrt{81+64}$=$\sqrt{145}$,小于半径之和,大于半径差,故两圆相交,故两圆的公切线的条数为2,
故选B.

点评 本题主要考查圆的标准方程的特征,两圆的位置关系的确定方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1).
(Ⅰ)试计算$\overrightarrow{a}$•$\overrightarrow{b}$及|$\overrightarrow{a}$+$\overrightarrow{b}$|的值; 
(Ⅱ)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow a=(cosx-sinx,\sqrt{2})$,$\overrightarrow b=(cosx+sinx,-\sqrt{2})(x∈R)$,则函数$f(x)=\overrightarrow a•\overrightarrow b$是(  )
A.周期为π的偶函数B.周期为π的奇函数
C.周期为$\frac{π}{2}$的偶函数D.周期为$\frac{π}{2}$的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A(-1,2,1),B(1,3,4),则(  )
A.$\overrightarrow{AB}$=(-1,2,1)B.$\overrightarrow{AB}$=(1,3,4)C.$\overrightarrow{AB}$=(2,1,3)D.$\overrightarrow{AB}$=(-2,-1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,则其体积为(  )
A.4B.$4\sqrt{2}$C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.根据如图程序框图,当输入5时,输出的是(  )
A.6B.4.6C.1.9D.-3.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,以下四个命题:
①点H是△A1BD的垂心;
②AH垂直平面CB1D1
③直线AH和BB1所成角为45°;
④AH的延长线经过点C1
其中假命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且椭圆C的离心率e=$\frac{\sqrt{2}}{2}$,长轴长为2$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)直线l:x=my-3交椭圆C于P、Q两点,求△PQF2面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,ABCD是梯形,AB∥CD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E为PD的中点.
(1)求作:AE∥平面PBC;
(2)求面PAD与面PBC所成的角.

查看答案和解析>>

同步练习册答案