精英家教网 > 高中数学 > 题目详情
10.已知向量$\overrightarrow a=(cosx-sinx,\sqrt{2})$,$\overrightarrow b=(cosx+sinx,-\sqrt{2})(x∈R)$,则函数$f(x)=\overrightarrow a•\overrightarrow b$是(  )
A.周期为π的偶函数B.周期为π的奇函数
C.周期为$\frac{π}{2}$的偶函数D.周期为$\frac{π}{2}$的奇函数

分析 利用数量积公式和二倍角公式化简f(x).

解答 解:$f(x)=\overrightarrow a•\overrightarrow b$=(cosx-sinx)(cosx+sinx)-2=cos2x-sin2x-2=cos2x-2.
∴f(x)的周期为π.
∵f(-x)=cos(-2x)-2=cos2x-2=f(x),
∴f(x)是偶函数.
故选A.

点评 本题考查了平面向量的数量积运算,三角函数的恒等变换,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知如图几何体A1C1E1-ABCDEF底面是边长为2的六变形,AA1,CC1,EE1长度为2且都垂直与底面,
(1)求证:平面A1C1E1∥平面ABCDEF
(2)求几何体A1C1E1-ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在等差数列{an}中,公差d≠0,a1=7,且a2,a5,a10成等比数列.
(1)求数列{an}的通项公式及其前n项和Sn
(2)若${b_n}=\frac{5}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(1,2,-1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为(  )
A.2$\sqrt{2}$B.4C.2$\sqrt{5}$D.2$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在△ABC中,AD⊥AB,$\overrightarrow{BC}=2\sqrt{3}\overrightarrow{BD}$,$|{\overrightarrow{AD}}|=1$,则$\overrightarrow{AC}•\overrightarrow{AD}$=(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.有5个大小、质地都相同的小球,标号分别为1,3,5,7,9,从中任取三个小球,其标号之和能够被3整除的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{10}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=x2cosx在x=1处的导数是(  )
A.0B.2cos1-sin1C.cos1-sin1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.两圆x2+y2=9和x2+y2-18x+16y+45=0的公切线有(  )条.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在y轴上的截距为-3,且倾斜角为150°角的直线方程是$y=-\frac{{\sqrt{3}}}{3}x-3$.

查看答案和解析>>

同步练习册答案