| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 首先,判断三棱锥 A-BA1D为正三棱锥,然后,得到△BA1D为正三角形,得到H为A在平面A1BD内的射影,然后,根据平面A1BD与平面B1CD1平行,得到②正确,最后,结合线面角和对称性求解.
解答 解:∵AB=AA1=AD,BA1=BD=A1D,
∴三棱锥 A-BA1D为正三棱锥,
∴点H是△A1BD的垂心,故①正确;
∵平面A1BD与平面B1CD1平行,AH⊥平面A1BD,
∴AH垂直平面CB1D1,∴②正确;
∵AA1∥BB1,∴∠A1AH就是直线AH和BB1所成角,
在直角三角形AHA1中,
∵AA1=1,A1H=$\frac{2}{3}×\frac{\sqrt{3}}{2}×\sqrt{2}$=$\frac{\sqrt{6}}{3}$,∴sin∠A1AH=$\frac{\sqrt{6}}{3}$,
∴③错误,
根据正方体的对称性得到AH的延长线经过C1,∴④正确;
故选:B.
点评 本题重点考查空间中点线面的位置关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | log76<log67 | B. | 1.013.4>1.013.5 | C. | 3.50.3<3.40.3 | D. | log0.44<log0.46 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 椭圆的离心率大于1 | |
| B. | 双曲线$\frac{x^2}{m^2}-\frac{y^2}{n^2}=-1$的焦点在x轴上 | |
| C. | $?x∈R,sinx+cosx=\frac{7}{5}$ | |
| D. | 不等式$\frac{1}{x}>1$的解集为(-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com