精英家教网 > 高中数学 > 题目详情
15.如图所示,已知P、Q是单位正方体ABCD-A1B1C1D1的面A1B1BA和面ABCD对角线上的点,且A1P=AQ,证明:PQ∥平面BCC1B1

分析 作PE∥A1A,连接EQ,则PE∥B1B,证明EQ∥BC,可得平面PEQ∥平面BCC1B1.即可证明结论.

解答 证明:作PE∥A1A,连接EQ,则PE∥B1B,
∵A1P=AQ,A1B=AC,
∵$\frac{{A}_{1}P}{{A}_{1}B}$=$\frac{AE}{AB}$=$\frac{AQ}{AC}$,
∴EQ∥BC,
∵PE∩EQ=E,B1B∩BC=B,
∴平面PEQ∥平面BCC1B1
∵PQ?平面PEQ,
∴PQ∥平面BCC1B1

点评 本题考查平面与平面平行、线面平行的判定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(-1,0),离心率e=$\frac{1}{2}$左右顶点分别为A、B,经过点F的直线l与椭圆M交于C、D两点(与A、B不重合).
(I)求椭圆M的方程;
(II)记△ABC与△ABD的面积分别为S1和S2,求|S1-S2|的最大值,并求此时l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设正实数集合A={a1,a2,a3,…,an},集合S={(a,b)|a∈A,b∈A,a-b∈A},则集合S中元素最多有$\frac{n(n-1)}{2}$个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{a}{3}{x^3}+\frac{b}{2}{x^2}-{a^2}$x(a>0,b∈R).
(Ⅰ)当a=1时,判断函数f(x)在R上的单调性,并证明你的结论;
(Ⅱ)若x1,x2是函数f(x)的两个不同的极值点,且|x1-x2|=$\sqrt{\frac{2}{a}-1}$,求实数a,b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知${({\frac{1}{2}})^x}≤4$且${log_{\sqrt{3}}}x≤2$,求函数f(x)=9x-3x+1-1的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:曲线y=x2+(2m-3)x+1与x轴相交于不同的两点;命题$q:\frac{x^2}{m}+\frac{y^2}{2}=1$表示焦点在x轴上的椭圆.若“p∨q”为真命题,“p∧q”为假命题,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a>0,a≠1且a3>a2,已知函数f(x)=ax在区间[1,2]上的最大值与最小值之差为2,设函数$g(x)=1-\frac{2}{{{a^x}+1}}$.
(1)判断函数g(x)的奇偶性;
(2)证明:$g({{x^2}-x+\frac{3}{4}})≥3-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对于曲线C:$\frac{{x}^{2}}{4-k}$+$\frac{{y}^{2}}{k-1}$=1,给出下面四个命题:
①曲线C不可能表示椭圆;
②“1<k<4”是“曲线C表示椭圆”的充分不必要条件;
③“曲线C表示双曲线”是“k<1或k>4”的必要不充分条件;
④“曲线C表示焦点在x轴上的椭圆”是“1<k<$\frac{5}{2}$”的充要条件
其中真命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将函数f(x)=sin(2x+θ)(|θ|<$\frac{π}{2}$)的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x)、g(x)的图象都经过点P(0,$\frac{1}{2}$),则φ=$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案