分析 根据f(x)、g(x)的图象都经过点$P(0,\frac{1}{2})$,则sinθ=$\frac{1}{2}$,sin(-2φ+θ)=$\frac{1}{2}$,求得θ的值,可得-2φ+θ的值,从而求得φ的值.
解答 解:将函数$f(x)=sin(2x+θ)(|θ|<\frac{π}{2})$的图象向右平移φ(0<φ<π)个单位长度后得到函数y=sin(2x-2φ+θ)的图象,
∵f(x)、g(x)的图象都经过点$P(0,\frac{1}{2})$,则sinθ=$\frac{1}{2}$,sin(-2φ+θ)=$\frac{1}{2}$,
∴θ=$\frac{π}{6}$,sin(-2φ+θ)=sin(-2φ+$\frac{π}{6}$)=$\frac{1}{2}$.
由于-2φ∈-2π,0),∴-2φ+$\frac{π}{6}$∈(-$\frac{11π}{6}$,$\frac{π}{6}$),∴-2φ+$\frac{π}{6}$=-$\frac{7π}{6}$,∴φ=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.
点评 本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数求值,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $a=\sqrt{3}$,b=1 | |
| B. | 函数f(x)在区间$[{\frac{π}{6},π}]$上单调递增 | |
| C. | 函数f(x)的图象的一个对称中心为$({\frac{2}{3}π,0})$ | |
| D. | 不等式f(x1)f(x2)≤4取到等号时|x2-x1|的最小值为2π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{4}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{3}{4}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 5 | C. | 15 | D. | 25 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 地区 | A | B | C |
| 数量 | 100 | 50 | 150 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com