精英家教网 > 高中数学 > 题目详情
9.“有些指数函数是减函数,y=2x是指数函数,所以y=2x是减函数”上述推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.以上都不是

分析 本题考查的知识点是演绎推理的基本方法及整数的,在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“有些…”,不难得到结论.

解答 解:∵大前提的形式:“有些指数函数是减函数”,不是全称命题,
∴不符合三段论推理形式,
∴推理形式错误,
故选C.

点评 演绎推理的主要形式就是由大前提、小前提推出结论的三段论推理.三段论推理的依据用集合论的观点来讲就是:若集合M的所有元素都具有性质P,S是M的子集,那么S中所有元素都具有性质P.三段论的公式中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况;这两个判断联合起来,揭示了一般原理和特殊情况的内在联系,从而产生了第三个判断结论.演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.三角形ABC的斜二侧直观图如图所示,则三角形ABC的面积为(  )
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对甲、乙两名篮球运动员分别在100场比赛中的得分情况进行统计,做出甲的得分频率分布直方图如图所示,列出乙的得分统计表如表所示:
分值[0,10)[10,20)[20,30)[30,40)
场数10204030
(1)估计甲在一场比赛中得分大于等于20分的概率.
(2)判断甲、乙两名运动员哪个成绩更稳定.(结论不要求证明)
(3)试利用甲的频率分布直方图估计甲每场比赛的平均得分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则8q等于(  )
A.9B.-12C.12D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设x是实数,定义[x]不超过实数x的最大整数,如:[2]=2,[2.3]=2,[-2.3]=-3,记函数f(x)=x-[x],函数g(x)=[3x+1]+$\frac{1}{2}$给出下列命题:
①函数f(x)在[-$\frac{1}{6}$,$\frac{2}{3}$]上有最小值,无最大值;       
②f(-$\frac{1}{2}$)=f($\frac{1}{2}$)且f(x)为偶函数;
③若g(x)-2x=0的解集为M,则集合M的所有元素之和为-2;
④设an=f($\frac{201{2}^{n}}{2013}$),则当n为偶数时$\sum_{i=1}^{n}$ai=$\frac{n}{2}$,当n为奇数时,则$\sum_{i=1}^{n}$ai=$\frac{n-1}{2}$+$\frac{2012}{2013}$.
其中正确的命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.等比数列$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$,…前8项的和为$\frac{255}{256}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a,b都是正数,且a+b-2a2b2-6=0,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为4$\sqrt{3}$,此时ab的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a,b,c均为正实数,a+2b+3c=m,且abc的最大值为$\frac{4}{3}$,则m的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.盒中共有9个球,其中红球、黄球、篮球各3个,这些球除颜色完全相同,从中一次随机抽取n个球(1≤n≤9).
(1)当n=3时,记“抽取的三个小球恰有两个小球颜色相同”为事件A,求P(A);
(2)当n=4时,用随机变量X表示抽到的红球的个数,求X的概率分布和数学期望E(X).

查看答案和解析>>

同步练习册答案