精英家教网 > 高中数学 > 题目详情
11.从装有编号为1,2,3,…,n+1的n+1个球的口袋中取出m个球(0<m≤n,m,n∈N),共有${C}_{n+1}^{m}$种取法.在这${C}_{n+1}^{m}$种取法中,不取1号球有C${\;}_{1}^{0}$${C}_{n}^{m}$种取法:必取1号球有${C}_{1}^{1}$${C}_{n}^{n-1}$种取法.所以${C}_{1}^{0}$${C}_{n}^{m}$+${C}_{1}^{1}$${C}_{m}^{m-1}$=${C}_{n+1}^{n}$,即${C}_{n}^{m}$+${C}_{n}^{m-1}$=${C}_{n+1}^{m}$成立,试根据上述思想,则有当1≤k≤m≤n,k,m,n∈N时,${C}_{n}^{m}$+${C}_{n}^{1}$${C}_{n}^{m-1}$+${C}_{n}^{2}$${C}_{n}^{m-2}$+…+${C}_{k}^{k}$${C}_{n}^{m-k}$=${C}_{n+k}^{m}$.

分析 类比已知可得式子:Cnm+Cn1•Cnm-1+Cn2•Cnm-2+…+Ckk•Cnm-k中,从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,故根据排列组合公式,可得答案.

解答 解:在Cnm+Cn1•Cnm-1+Cn2•Cnm-2+…+Ckk•Cnm-k中,
Cnm表示:从装有n个白球,取出m个球的所有情况,
Cn1•Cnm-1表示:从装有n个白球,1个黑球的袋子里,取出m个球的所有情况,
Cn2•Cnm-2表示:从装有n个白球,2个黑球的袋子里,取出m个球的所有情况,

Ckk•Cnm-k表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况,
故${C}_{n}^{m}$+${C}_{n}^{1}$${C}_{n}^{m-1}$+${C}_{n}^{2}$${C}_{n}^{m-2}$+…+${C}_{k}^{k}$${C}_{n}^{m-k}$表示:从装有n+k球中取出m个球的不同取法数,即${C}_{n+k}^{m}$.
故答案为:${C}_{n+k}^{m}$

点评 这个题结合考查了推理和排列组合,处理本题的关键是熟练掌握排列组合公式,明白每一项所表示的含义,再结合已知条件进行分析,最后给出正确的答案

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
在如图所示的阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的
中点,连接DE,BD,BE.
(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(Ⅱ)记阳马P-ABCD的体积为V1,四面体EBCD的体积为V2,求$\frac{{V}_{1}}{{V}_{2}}$的值.
(理科专用)(Ⅲ)若面DEF与面ABCD所成二面角的大小为$\frac{π}{3}$,求$\frac{DC}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求证:PB∥平面EAC;
(3)求直线EC与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.随机变量ξ的概率分布列为P(ξ=n)=a($\frac{4}{5}$)n(n=0.1.2),其中a为常数,则P(0.1<ξ<2.9)的值为(  )
A.$\frac{16}{25}$.B.$\frac{9}{16}$C.$\frac{36}{61}$D.$\frac{20}{61}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可兑换现金50元,有二等奖券3张,每张可兑换现金10元,其余6张券没有奖,某顾客从这10张券中任取2张,
(1)求该顾客中奖的概率;
(2)求该顾客获得现金总额ξ(元)的概率分布列;
(3)求该顾客获得现金总额ξ(元)的数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$,AB=1,M是PB的中点.N是AB的中点.
(1)证明:面PAD∥面MNC;
(2)证明:面PAD⊥面PCD;
(3)求PC与面PAD所成的角的正切;
(4)求二面角M-AC-B的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某公司客服中心有四部咨询电话,某一时刻每部电话能否被接通是相互独立的.已知每部电话响第一声时被接通的概率是0.1,响第二声时被接通的概率是0.3,响第三声时被接通的概率是0.4,响第四声时被接通的概率是0.1.假设有ξ部电话在响四声内能被接通.
(Ⅰ)求四部电话至少有一部在响四声内能被接通的概率;
(Ⅱ)求随机变量ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列结论中正确的是②③④.(写出所有正确结论的序号)
①若$\overrightarrow a•\overrightarrow b=0$,则$\overrightarrow a=0$或$\overrightarrow b=0$;
②若$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a|•|\overrightarrow b|$,则$\overrightarrow a∥\overrightarrow b$;
③若$\overrightarrow a•\overrightarrow b=0$,则$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$;
④在△ABC中,点M满足$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow 0$,若存在实数λ使得$\overrightarrow{AB}+\overrightarrow{AC}=λ•\overrightarrow{AM}$成立,则λ=3.

查看答案和解析>>

同步练习册答案