精英家教网 > 高中数学 > 题目详情

【题目】过圆 上的点 轴的垂线,垂足为 ,点 满足 .当 上运动时,记点 的轨迹为 .

(1)求 的方程;

(2)过点 的直线交于 两点,与圆 交于 两点,求 的取值范围.

【答案】1.(2

【解析】试题分析:(1)代入向量计算出 的轨迹为(2)利用韦达定理和弦长公式计算得,化简运用定义域给出范围

解析:(1)设点坐标点坐标点坐标

可得

因为在圆:上运动

所以点的轨迹的方程为

2当直线的斜率不存在时,直线的方程为,此时

所以

当直线的斜率存在时,设直线的方程为

联立方程组消去整理得

因为点在椭圆内部,所以直线与椭圆恒交于两点,

由韦达定理,得

所以

在圆:,圆心到直线的距离为

所以

所以

又因为当直线的斜率不存在时,

所以的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.

(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)

(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为)进行技术分析.求事件“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明:当时,函数上是单调函数

(2)时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12000元.公司每位员工的培训费用按以下方式与该机构结算:若公司参加培训的员工人数不超过30人时,每人的培训费用为850元;若公司参加培训的员工人数多于30人,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为人,每位员工的培训费为元,培训机构的利润为元.

(1)写出 之间的函数关系式;

(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若对任意的,都存在,使得,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断函数的奇偶性并说明理由;

2)当时,判断函数上的单调性,并利用单调性的定义证明;

3)是否存在实数,使得当的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集为,且中只有一个整数,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,点是椭圆内且在轴上的一个动点,过点的直线与椭圆交于两点(在第一象限),且.

(Ⅰ)若点为椭圆的下顶点,求点的坐标;

(Ⅱ)当为坐标原点)的面积最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于四面体,有以下命题:①若AB=AC=AD,则AB,AC,AD与底面所成的角相等;②若AB⊥CD,AC⊥BD,则点A在底面BCD内的射影是△BCD的内心;③四面体的四个面中最多有四个直角三角形;④若四面体的6条棱长都为1,则它的内切球的表面积为,其中正确的命题是

A. ①③ B. ③④ C. ①②③ D. ①③④

查看答案和解析>>

同步练习册答案