【题目】过圆 : 上的点 作 轴的垂线,垂足为 ,点 满足 .当 在 上运动时,记点 的轨迹为 .
(1)求 的方程;
(2)过点 的直线 与交于 , 两点,与圆 交于 , 两点,求 的取值范围.
科目:高中数学 来源: 题型:
【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.
(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为和)进行技术分析.求事件“”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12000元.公司每位员工的培训费用按以下方式与该机构结算:若公司参加培训的员工人数不超过30人时,每人的培训费用为850元;若公司参加培训的员工人数多于30人,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为人,每位员工的培训费为元,培训机构的利润为元.
(1)写出与 之间的函数关系式;
(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(且).
(1)判断函数的奇偶性并说明理由;
(2)当时,判断函数在上的单调性,并利用单调性的定义证明;
(3)是否存在实数,使得当的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,点是椭圆内且在轴上的一个动点,过点的直线与椭圆交于,两点(在第一象限),且.
(Ⅰ)若点为椭圆的下顶点,求点的坐标;
(Ⅱ)当(为坐标原点)的面积最大时,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于四面体,有以下命题:①若AB=AC=AD,则AB,AC,AD与底面所成的角相等;②若AB⊥CD,AC⊥BD,则点A在底面BCD内的射影是△BCD的内心;③四面体的四个面中最多有四个直角三角形;④若四面体的6条棱长都为1,则它的内切球的表面积为,其中正确的命题是
A. ①③ B. ③④ C. ①②③ D. ①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com