分析 利用余弦定理,求出BC,表示出四边形ABCD面积,利用辅助角公式化简,即可得出结论.
解答 解:设∠BAC=x,则根据余弦定理BC2=22+32-2×2×3×cosx=13-12cosx
于是S四边形ABCD=$\frac{1}{2}×2×3×$sinx+$\frac{\sqrt{3}}{4}$(13-12cosx)=3sinx-3$\sqrt{3}$cosx+$\frac{13\sqrt{3}}{4}$=6sin(x-60°)+$\frac{13\sqrt{3}}{4}$.
所以当x为150°时最大,最大值为6+$\frac{13\sqrt{3}}{4}$.
点评 本题考查余弦定理,考查四边形面积的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [6,4+4$\sqrt{3}$] | B. | [4$\sqrt{2}$,8] | C. | [4$\sqrt{3}$,8] | D. | [6,12] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com