精英家教网 > 高中数学 > 题目详情
如图,在三棱锥A-BCD中,AB⊥平面BCD,BC⊥CD,∠CBD=60°,BC=2.
(Ⅰ)求证:平面ABC⊥平面ACD;
(Ⅱ)若E是BD的中点,F为线段AC上的动点,EF与平面ABC所成的角记为θ,当tanθ的最大值为
15
2
,求二面角A-CD-B的余弦值.
考点:平面与平面垂直的判定,二面角的平面角及求法
专题:空间位置关系与距离,空间角
分析:(Ⅰ)直接根据已知条件,利用线线垂直,转化成线面垂直,最后转化出面面垂直.
(Ⅱ)首先建立空间直角坐标系,利用平面的法向量,建立等量关系,最后求出二面角平面角的余弦值.
解答: 证明:(Ⅰ)在三棱锥A-BCD中,AB⊥平面BCD,
所以:AB⊥CD,
又∵BC⊥CD,
∴CD⊥平面ABC,
∵CD?平面ACD,
∴平面ABC⊥平面ACD.
(Ⅱ)建立空间直角坐标系C-xyz,
则:C(0,0,0),D(2
3
,0,0),B(0,2,0),E(
3
,1,0),
设A(0,2,t),
则:
CF
CA
=λ(0,2,t)

所以:F(0,2λ,tλ),
EF
=(-
3
,2λ-1,tλ)

平面ABC的法向量为:
n
=(1,0,0)

由sinθ=
3
(t2+4)2-4λ+4
由于tanθ的最大值为
15
2

则:(t2+4)-4λ+4的最小值为
19
5

解得:t=4,
又∵BC⊥CD,AC⊥CD,
所以∠ACB就是二面角A-CD-B的平面角.
cos∠ACB=
BC
AC
=
5
5
点评:本题考查的知识要点:面面垂直的判定定理,二面角的应用,空间直角坐标系的应用,法向量的应用.及相关的运算问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(1,2)在圆x2+y2+2x+3y+m=0内,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,-4),B(0,6),C(-8,10),则
AB
+2
BC
为(  )
A、(18,18)
B、(-18,18)
C、(18,-18)
D、(-18,-18)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-2-lnx(a∈R).
(1)若f(x)在点(e,f(e))处的切线为ex-y+2=0,求a的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线C:x2=4y的焦点为F,定点A(2
2
,0),若射线FA与抛物线C相交于点M,与抛物线C的准线相交于点N,则FM:MN=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a(x+1)2ln(x+1)+bx,曲线y=f(x)过点(e-1,e2-e+1),且在点(0,0)处的切线方程为y=0.
(1)求a,b的值;
(2)证明:当x≥0时,f(x)≥x2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,⊙O1与⊙O2相交于A,B两点,点P在线段BA延长线上,T是⊙O1上一点,PT⊥O2T,过P的直线交⊙O1于C,D两点
(1)求证:
PT
PC
=
PD
PT

(2)若⊙O1与⊙O2的半径分别为4,3,其圆心距O1O2=5,PT=
24
2
5
,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设两个非零向量
e1
e2
,不共线,若
AB
=
e1
+2
e2
BC
=2
e1
+7
e2
CD
=3(
e1
+
e2
),试问:A、B、C、D四点中有没有三点共线的情况?若有,是哪三点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

正四面体OABC,其棱长为1.若
OP
=x
OP
+y
oa
+z
OC
(0≤x,y,z≤1),且满足x+y+z≥1,则动点P的轨迹所形成的空间区域的体积为
 

查看答案和解析>>

同步练习册答案