| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 首先,由椭圆的方程求出焦点坐标,然后,设出椭圆的三角式,代入求解,即可得出答案.
解答 解:∵F1、F2是椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的焦点,
∴F1(-1,0),F2(1,0),
∵P是椭圆上任意一点,设P(2cosθ,$\sqrt{3}$sinθ),(0≤θ≤2π),
∴$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=(-1-2cosθ,-$\sqrt{3}$sinθ)•(1-2cosθ,-$\sqrt{3}cosθ$)=4cos2θ-1+3sin2θ=2+cos2θ≤3,
即$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$的最大值为3.
故选:C.
点评 本题考查学生的计算能力,考查椭圆的三角式方程,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 24 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,-1} | B. | {0,$\frac{1}{2}}\right\$} | C. | {-1,$\frac{1}{2}}\right\$} | D. | {-1,0,$\frac{1}{2}}\right\$} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com