精英家教网 > 高中数学 > 题目详情
已知数列{an}满足 a1=1,an=1+
1
an-1
,则 a5=(  )
A、
3
2
B、
5
3
C、
8
5
D、2
考点:数列递推式
专题:等差数列与等比数列
分析:由已知条件利用递推思想求解.
解答: 解:∵数列{an}满足 a1=1,an=1+
1
an-1

a2=1+
1
1
=2,
a3=1+
1
2
=
3
2

a4=1+
1
3
2
=
5
3

a5=1+
1
5
3
=
8
5

故选:C.
点评:本题考查数列的第5项的求法,是基础题,解题时要认真审题,注意递推思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求P(ξ=4)=(  )
A、
4
15
B、
1
15
C、
28
45
D、
14
45

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={0,1},N={x∈Z|y=
x+1
},则(  )
A、M∩N=∅
B、M∩N={0}
C、M∩N={1}
D、M∩N=M

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(
2
),c=f(-2),则a,b,c大小关系是(  )
A、a>b>c
B、a>c>b
C、b>c>a
D、c>b>a
y

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,若a1+a3+a8=9,a6=9,则S9的值是(  )
A、64B、72
C、54D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

一条光线从点A(-2,3)射出,经x轴反射后,反射光线经过点B(3,2),则反射光线所在的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(1)已知矩形ABCD中,AD=4,E、F分别是AD、BC的中点,点O在EF上,且FO=3OE,把△ABE沿着BE翻折,使点A在平面BCD上的射影恰为点O(如图(2)).

(1)求证:平面ABF⊥平面AEF;
(2)求二面角E-AB-F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线
x=1+cosθ
y=sinθ
的中心到直线y=
3
3
x的距离是(  )
A、
1
2
B、
3
2
C、1
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x-a(x+1)ln(x+1),(x>-1,a≥0).
(1)当a=1时,若方程f(x)=t在[-
1
2
,1]
上有两个实数解,求实数t的取值范围;
(2)求函数f(x)在定义域上零点个数.

查看答案和解析>>

同步练习册答案