精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=ex-ax+b(a,b∈R).
(Ⅰ)若f(x)在x=0处的极小值为2,求a,b的值;
(Ⅱ)设g(x)=f(x)+ln(x+1),当x≥0时,g(x)≥1+b,求a的取值范围.

分析 (Ⅰ)求出函数的导数,根据f(x)在x=0处的极小值为2,得到关于a,b的方程组,解出即可;
(Ⅱ)问题转化为ex-ax+ln(x+1)≥1在x∈[0,+∞)恒成立,令h(x)=ex-ax+ln(x+1),(x≥0),根据函数的单调性求出a的范围即可.

解答 解:(Ⅰ)f′(x)=ex-a,
若f(x)在x=0处的极小值为2,
则 $\left\{\begin{array}{l}{f′(0)=1-a=0}\\{f(0)=1+b=2}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=1}\end{array}\right.$;
(Ⅱ)g(x)=f(x)+ln(x+1)=ex-ax+b+ln(x+1),
当x≥0时,g(x)≥1+b,即ex-ax+ln(x+1)≥1在x∈[0,+∞)恒成立,
令h(x)=ex-ax+ln(x+1),(x≥0),
则h′(x)=ex+$\frac{1}{x+1}$-a,
记m(x)=ex+$\frac{1}{x+1}$-a,则m′(x)=ex-$\frac{1}{{(x+1)}^{2}}$,
当x≥0时,ex>1,$\frac{1}{{(x+1)}^{2}}$≤1,此时m'(x)≥0,
h'(x)在(0,+∞)上递增,
h'(x)≥h'(0)=2-a,
a≤2时,h′(x)≥0,
所以h(x)在[0,+∞)上递增,
故h(x)≥h(0)=1成立;
a>2时,?x0∈(0,+∞),使得h(x)在[0,x0)递减,在(x0,+∞)递增,
故h(x)min=h(x0)<h(0)=1,不合题意,
故a≤2.

点评 本题考查函数恒成立问题,考查导数知识的运用,考查分类讨论的数学思想,考查学生分析解决问题的能力,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图所示的程序框图,输出的结果是S=2017,则输入A的值为(  )
A.2018B.2016C.1009D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=x3-2f′(1)x,则f′(1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数Z1=2+i,Z2=1+i,则$\frac{z_1}{z_2}$在复平面内对应的点位于(  )
A.第一象限B.第三象限C.第二象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.a1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,则数列{an}的第6项是$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分的条件是(  )
A.x<0B.x<0或x>4C.|x-1|>1D.|x-2|>3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点M的坐标为(5,θ),且tan θ=-$\frac{4}{3}$,$\frac{π}{2}$<θ<π,则点M的直角坐标为(-3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把0,1,2三个数字组成四位数,每个数字至少使用一次,则这样的四位数的个数为(  )
A.18B.24C.27D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.中心在原点,对称轴为坐标轴的双曲线C与圆O:x2+y2=10有公共点P(3,-1),且圆O在P点处的切线与双曲线C的一条渐近线平行,则该双曲线的实轴长为(  )
A.$\frac{4\sqrt{5}}{3}$B.4$\sqrt{5}$C.$\frac{8\sqrt{5}}{3}$D.8$\sqrt{5}$

查看答案和解析>>

同步练习册答案