分析 根据两点间的距离公式分别求得三边的长,即可判断最大和最小边的长度.
解答 解:△P1P2P3中,|P1P2|=$\sqrt{{(4-1)}^{2}{+(3-2)}^{2}{+(2-1)}^{2}}$=$\sqrt{11}$,
|P1P3|=$\sqrt{{(3-1)}^{2}{+(1-2)}^{2}{+(-1-1)}^{2}}$=3,
|P2P3|=$\sqrt{{(3-4)}^{2}{+(1-3)}^{2}{+(-1-2)}^{2}}$=$\sqrt{14}$,
∴这个三角形的最大边边长是$\sqrt{14}$,最小边边长是3.
故答案为:$\sqrt{14}$,3.
点评 本题考查了利用空间两点间的距离公式求线段长的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {y|y≥-4} | B. | {y|-1≤y≤5} | C. | {y|-4≤y≤-1} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $2\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com