17£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬|$\overrightarrow{a}$-$\overrightarrow{b}$|=2£¬¶¨Ò壺$\overrightarrow{{c}_{¦Ë}}$=¦Ë$\overrightarrow{a}$+£¨1-¦Ë £©$\overrightarrow{b}$£¬ÆäÖÐ0¡Ü¦Ë¡Ü1£®Èô$\overrightarrow{{c}_{¦Ë}}$•$\overrightarrow{{c}_{\frac{1}{2}}}$=$\frac{1}{2}$£¬Ôò|$\overrightarrow{{c}_{¦Ë}}$|µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{\sqrt{2}}{2}$C£®1D£®$\sqrt{2}$

·ÖÎö »­³ö²Ýͼ£¬Í¨¹ý$\overrightarrow{a}$¡Í$\overrightarrow{b}$¡¢|$\overrightarrow{a}$-$\overrightarrow{b}$|=2¿ÉµÃ|$\overrightarrow{{c}_{\frac{1}{2}}}$|=1£¬ÀûÓÃ$\overrightarrow{{c}_{¦Ë}}$=¦Ë$\overrightarrow{a}$+£¨1-¦Ë £©$\overrightarrow{b}$¿ÉµÃB¡¢P¡¢D¡¢CËĵ㹲Ïߣ¬½áºÏ$\frac{1}{2}$=|$\overrightarrow{{c}_{¦Ë}}$|cos¦Á£¬¿ÉµÃµ±B¡¢PÁ½µãÖØºÏʱ|$\overrightarrow{{c}_{¦Ë}}$|×î´ó£¬¼ÆËã¼´¿É£®

½â´ð ½â£ºÈçͼ£¬¼Ç$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AC}$=$\overrightarrow{b}$£¬$\overrightarrow{AD}$=$\overrightarrow{{c}_{\frac{1}{2}}}$£¬$\overrightarrow{AP}$=$\overrightarrow{{c}_{¦Ë}}$£¬£¼$\overrightarrow{{c}_{\frac{1}{2}}}$£¬$\overrightarrow{{c}_{¦Ë}}$£¾=¦Á£®
¡ß$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬|$\overrightarrow{a}$-$\overrightarrow{b}$|=2£¬¡à|$\overrightarrow{{c}_{\frac{1}{2}}}$|=1£¬
¡ß$\overrightarrow{{c}_{¦Ë}}$=¦Ë$\overrightarrow{a}$+£¨1-¦Ë £©$\overrightarrow{b}$£¬
¡àB¡¢P¡¢D¡¢CËĵ㹲Ïߣ¬
¡ß$\frac{1}{2}$=$\overrightarrow{{c}_{¦Ë}}$•$\overrightarrow{{c}_{\frac{1}{2}}}$=|$\overrightarrow{{c}_{¦Ë}}$|•|$\overrightarrow{{c}_{\frac{1}{2}}}$|cos¦Á=1•|$\overrightarrow{{c}_{¦Ë}}$|cos¦Á£¬
¡à$\overrightarrow{{c}_{¦Ë}}$ÔÚ$\overrightarrow{{c}_{\frac{1}{2}}}$ÉϵÄͶӰΪ$\frac{1}{2}$£¬
¡àµ±B¡¢PÁ½µãÖØºÏʱ£¬|$\overrightarrow{{c}_{¦Ë}}$|×î´ó£¬
´Ëʱ¦Á=$\frac{¦Ð}{3}$£¬|$\overrightarrow{{c}_{¦Ë}}$|=|$\overrightarrow{{c}_{\frac{1}{2}}}$|=1£¬
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÆ½ÃæÏòÁ¿µÄ¼¸ºÎÒâÒ壬ɿ¼°µ½ÏòÁ¿µÄ¼Ó¡¢¼õ·¨ÔËËã·¨Ôò£¬Èýµã¹²ÏßµÄÏòÁ¿±íʾ£¬ÏòÁ¿µÄͶӰµÈ֪ʶ£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èôº¯Êýf£¨x£©=-lnx+ax2+bx-a-2bÓÐÁ½¸ö¼«Öµµãx1£¬x2£¬ÆäÖÐ-$\frac{1}{2}£¼a£¼0$£¬b£¾0£¬ÇÒf£¨x2£©=x2£¾x1£¬Ôò·½³Ì2a[f£¨x£©]2+bf£¨x£©-1=0µÄʵ¸ù¸öÊýΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬µã PΪÕý·½ÐÎA1B1C1D1µÄÖÐÐÄ£®
ÏÂÁÐ˵·¨ÕýÈ·µÄÊǢ٢ڢۢܣ¨Ð´³öÄãÈÏΪÕýÈ·µÄËùÓÐÃüÌâµÄÐòºÅ£©£®
 ¢ÙÖ±ÏßAPÓëÆ½ÃæABB1A1Ëù³É½ÇµÄÕýÇÐֵΪ$\frac{\sqrt{5}}{5}$£»
¢ÚÈôM£¬N·Ö±ðÊÇÕý·½ÐÎCDD1C1£¬BCC1B1µÄÖÐÐÄ£¬ÔòAP¡ÍMN£»
¢ÛÈôM£¬N·Ö±ðÊÇÕý·½ÐÎCDD1C1£¬BCC1B1µÄÖÐÐÄ£¬ÔòVA-PMN=VN-ACD£»
¢ÜÆ½ÃæBCC1B1Öв»´æÔÚʹ$\overrightarrow{MA}$•$\overrightarrow{MP}$=0³ÉÁ¢µÄMµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª{an}ÊǵȲîÊýÁУ¬ÓÐÏÂÁÐÊýÁУº¢Ù{2an-1}£»¢Ú{a2n}£»¢Û{a3n+1}£»¢Ü{|an|}£»¢Ý{an+an+1}£»¢Þ{anan+1}£»ÆäÖÐÊǵȲîÊýÁеÄÊǢ٢ڢۢݣ¨ÌîÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔĶÁÓұߵijÌÐò¿òͼ£¬ÔËÐÐÏàÓ¦µÄ³ÌÐò£¬ÔòÊä³ös£¬kµÄÖµÒÀ´ÎΪ£¨¡¡¡¡£©
A£®32£¬63B£®64£¬63C£®63£¬32D£®63£¬64

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªa£¬b¡ÊR£¬a2-2ab+5b2=4£¬ÔòabµÄ×îСֵΪ$\frac{1-\sqrt{5}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚ¡÷ABCÖУ¬EΪACÉÏÒ»µã£¬$\overrightarrow{AC}=3\overrightarrow{AE}$£¬PΪBEÉÏÈÎÒ»µã£¬Èô$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}£¨{m£¾0£¬n£¼0}£©$£¬Ôò$\frac{3}{m}+\frac{1}{n}$µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®9B£®10C£®11D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÈôË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬Ïß¶ÎF1F2±»Å×ÎïÏßy2=4bxµÄ½¹µã·Ö³É5£º3Á½¶Î£¬Ôò´ËË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{4\sqrt{15}}{15}$B£®$\frac{2\sqrt{3}}{3}$C£®$\sqrt{15}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¸ø³öÏÂÁнáÂÛ£º¢ÙÃüÌâ¡°?x¡ÊR£¬sinx¡Ù1¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬sinx=1¡±£»
¢ÚÃüÌâ¡°¦Á=$\frac{¦Ð}{6}$¡±ÊÇ¡°sin¦Á=$\frac{1}{2}$¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢ÛÊýÁÐ{an}Âú×ã¡°an+1=3an¡±ÊÇ¡°ÊýÁÐ{an}ΪµÈ±ÈÊýÁС±µÄ³ä·Ö±ØÒªÌõ¼þ£®
ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ù¢ÛC£®¢Ú¢ÛD£®¢Ù¢Ú¢Û

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸