精英家教网 > 高中数学 > 题目详情
16.已知函数y=|x-3|+1在区间[0,9]上的值域是(  )
A.[4,7]B.[0,7]C.[1,7]D.[2,7]

分析 对x进行讨论,去掉绝对值,利用函数的单调性,求解即可.

解答 解:由题意:函数y=|x-3|+1,定义域为[0,9];
当x≥3时,函数y=x-2,x在[3,9]是增函数;
当x<3时,函数y=4-x,x在[0,3)是减函数;
故得x=3时,函数y的值最小为:1;
x=9时,函数y的值最大为:7;
故得函数y=|x-3|+1在区间[0,9]上的值域为[1,7].
故选:C.

点评 本题考查了分段函数的值域的求法,要注重定义域范围和结合单调性考虑.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.(-$\frac{7}{8}$)0+[(-2)3]${\;}^{-\frac{2}{3}}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设点Pi(xi,yi)在直线li:aix+biy=ci上,若ai+bi=ici(i=1,2),且|P1P2|≥$\frac{{\sqrt{2}}}{2}$恒成立,则$\frac{c_1}{a_1}$+$\frac{a_2}{c_2}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数a,b满足$\frac{9}{{a}^{2}}$+$\frac{4}{{b}^{2}}$=1,则a2+b2的最小值是25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为$F(-\sqrt{3},0)$,且过点D(2,0),求该椭圆的标准方程是.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义在R上的偶函数f(x),在[0,+∞)是增函数,若f(k)>f(2),则k的取值范围是{k|k>2或k<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列说法中错误的是①③④(填序号)
①命题“?x1,x2∈M,x1≠x2,有[f(x1)-f(x2)](x2-x1)>0”的否定是“?x1,x2∉M,x1≠x2,有[f(x1)-f(x2)](x2-x1)≤0”;
②若一个命题的逆命题为真命题,则它的否命题也一定为真命题;
③已知p:x2+2x-3>0,$q:\frac{1}{3-x}>1$,若命题(?q)∧p为真命题,则x的取值范围是(-∞,-3)∪(1,2)∪[3,+∞);
④“x≠3”是“|x|≠3”成立的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足a1+2a2+3a3+…+nan=n+1(n∈N*),则数列{an}的通项公式${a_n}=\left\{{\begin{array}{l}{2(n=1)}\\{\frac{1}{n}(n≥2)}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在区间[0,π]上随机取一个数x,使$-\frac{{\sqrt{3}}}{2}<cosx<\frac{{\sqrt{3}}}{2}$的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

同步练习册答案