精英家教网 > 高中数学 > 题目详情
6.“α=2kπ+$\frac{π}{3}$(k∈Z)”是“tanα=$\sqrt{3}$”的充分不必要条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”)

分析 由tanα=$\sqrt{3}$,解得α=kπ+$\frac{π}{3}$(k∈Z),即可得出.

解答 解:由tanα=$\sqrt{3}$,解得α=kπ+$\frac{π}{3}$(k∈Z),
∴“α=2kπ+$\frac{π}{3}$(k∈Z)”是“tanα=$\sqrt{3}$”的充分不必要条件.
故答案为:充分不必要.

点评 本题考查了三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知A,B的极坐标分别为(4,$\frac{2π}{3}$),(2,$\frac{π}{3}$)则直线AB的极坐标方程为ρsin(θ+$\frac{π}{6}$)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.马云同学向某银行贷款M万元,用于购买某件商品,贷款的月利率为5%(按复利计算),按照还款合同,马云同学每个月都还款x万元,20个月还清,则下列关系式正确的是(  )
A.20x=MB.20x=M(1+5%)20C.20x<M(1+5%)20D.20x>M(1+5%)20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f(x)=lnx+$\frac{1}{x}$,则f(sin$\frac{π}{5}$)与f(cos$\frac{π}{5}$)的大小关系是(  )
A.f(sin$\frac{π}{5}$)>f(cos$\frac{π}{5}$)B.f(sin$\frac{π}{5}$)<f(cos$\frac{π}{5}$)C.f(sin$\frac{π}{5}$)=f(cos$\frac{π}{5}$)D.大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是(  )
A.f(x)=x-1,g(x)=$\frac{x^2}{x}$-1B.f(x)=2x-1,g(x)=2x+1
C.f(x)=x2,g(x)=$\root{3}{{x}^{6}}$D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=$\frac{1}{2}$,且椭圆C经过点P(2,3),过椭圆C的左焦点F1且不与坐标轴垂直的直线交椭圆C于A,B两点.
(1)求椭圆C的方程;
(2)设线段AB的垂直平分线与x轴交于点G,求△PF1G的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某高三年级有500名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图),若在身高[160,170),[170,180),[180,190]三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[160,170)内的学生中选取的人数应为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.24πB.12πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n 14  15  16  17  18  1920
频数1020  16  16  15  13 10
以100天记录的各需求量的频数作为各需求量发生的概率.
(1)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;
(2)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?说明理由.

查看答案和解析>>

同步练习册答案