精英家教网 > 高中数学 > 题目详情
14.设f(x)=lnx+$\frac{1}{x}$,则f(sin$\frac{π}{5}$)与f(cos$\frac{π}{5}$)的大小关系是(  )
A.f(sin$\frac{π}{5}$)>f(cos$\frac{π}{5}$)B.f(sin$\frac{π}{5}$)<f(cos$\frac{π}{5}$)C.f(sin$\frac{π}{5}$)=f(cos$\frac{π}{5}$)D.大小不确定

分析 求出函数f(x)的单调区间,判断sin$\frac{π}{5}$与cos$\frac{π}{5}$的大小,从而求出f(sin$\frac{π}{5}$)与f(cos$\frac{π}{5}$)的大小即可.

解答 解:f(x)=lnx+$\frac{1}{x}$,x>0,f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
令f′(x)<0,解得:0<x<1,
故f(x)在(0,1)递减,
而sin$\frac{π}{5}$<cos$\frac{π}{5}$<1,
故f(sin$\frac{π}{5}$)>f(cos$\frac{π}{5}$),
故选:A.

点评 本题考查了三角函数的性质,考查函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.将曲线的参数方程$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)化为普通方程为$\sqrt{3}$x-y-3$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列程序执行后输出的结果是(  )
A.3B.6C.15D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sinx+cos(x+$\frac{π}{6}$)的最小值和最小正周期分别是(  )
A.-$\sqrt{3}$,πB.-1,πC.-$\sqrt{3}$,2πD.-1,2π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}{x=-1+t}\\{y=1+t}\end{array}\right.$,(t为参数),曲线C的普通方程为(x-2)2+(y-1)2=5,点P的极坐标为(2$\sqrt{2}$,$\frac{7π}{4}$).
(1)求直线l的普通方程和曲线C的极坐标方程;
(2)若将直线l向右平移2个单位得到直线l′,设l′与C相交于A,B两点,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在直角△ABC的内角A、B、C的对边分别是a、b、c,若A=30°,a=1,b=$\sqrt{3}$,则c=(  )
A.1B.2C.$\sqrt{2}$D.2或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.“α=2kπ+$\frac{π}{3}$(k∈Z)”是“tanα=$\sqrt{3}$”的充分不必要条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=x2-ax+1(a为常数),
(1)若f(x)的图象与x轴有唯一的交点,求a的值;
(2)若f(x)在区间[a-1,a+1]为单调函数,求a的取值范围;
(3)求f(x)在区间[0,2]内的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.①学校为了了解高一学生情况,从高一400名学生中抽取20人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分.现在从中抽取12人了解有关情况;③运动会服务人员为参加400m决赛的6名同学安排跑道.就这三件事,合适的抽样方法为(  )
A.分层抽样,分层抽样,简单随机抽样
B.系统抽样,系统抽样,简单随机抽样
C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样

查看答案和解析>>

同步练习册答案