精英家教网 > 高中数学 > 题目详情
19.在直角△ABC的内角A、B、C的对边分别是a、b、c,若A=30°,a=1,b=$\sqrt{3}$,则c=(  )
A.1B.2C.$\sqrt{2}$D.2或1

分析 由已知利用正弦定理可求sinB的值,结合B的范围可求B,进而可求C,即可求c的值.

解答 解:∵A=30°,a=1,b=$\sqrt{3}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
∵B为锐角,可得:B=60°,C=180°-A-B=90°,
∴c=$\sqrt{{a}^{2}+{b}^{2}}$=2.
故选:B.

点评 本题主要考查了正弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2cos($\frac{x}{2}$-$\frac{π}{3}$)+1
(1)求f(x)的最小正周期;对称轴方程和对称中心的坐标
(2)求f(x)在区间[0,2π]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列角中与-200°角终边相同角(  )
A.200°B.-160°C.160°D.20°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图①所示,四边形ABCD为等腰梯形,AD∥BC,且AD=$\frac{1}{3}$BC=a,∠BAD=135°,AE⊥BC于点E,F为BE的中点.将△ABE沿着AE折起至△AB′E的位置,得到如图②所示的四棱锥B′-ADCE.
(1)求证:AF∥B′CD平面;
(2)若平面AB′E⊥平面AECD,三棱锥A-B′ED的体积为$\frac{9}{16}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f(x)=lnx+$\frac{1}{x}$,则f(sin$\frac{π}{5}$)与f(cos$\frac{π}{5}$)的大小关系是(  )
A.f(sin$\frac{π}{5}$)>f(cos$\frac{π}{5}$)B.f(sin$\frac{π}{5}$)<f(cos$\frac{π}{5}$)C.f(sin$\frac{π}{5}$)=f(cos$\frac{π}{5}$)D.大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x+$\frac{a}{x}$,且f(1)=10.
(1)求a的值;
(2)判断f(x)的奇偶性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=$\frac{1}{2}$,且椭圆C经过点P(2,3),过椭圆C的左焦点F1且不与坐标轴垂直的直线交椭圆C于A,B两点.
(1)求椭圆C的方程;
(2)设线段AB的垂直平分线与x轴交于点G,求△PF1G的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既无最大值,也无最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),则下列结论成立的是 (  )
A.若f(x1)≤f(x)≤f(x2)对?x∈R恒成立,则|x2-x1|min
B.y=f(x)的图象关于点(-$\frac{2π}{3}$,0)中心对称
C.函数f(x)的单调区间为:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)
D.函数y=|f(x)|(x∈R)的图象相邻两条对称轴之间的距离是$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,平行六面体ABCDA1B1C1D1中,$\overrightarrow{AB}$=a,$\overrightarrow{AD}$=b,$\overrightarrow{A{A}_{1}}$=c,E为A1D1的中点,F为BC1与B1C的交点,
(1)用基底{a,b,c}表示下列向量:$\overrightarrow{D{B}_{1}}$,$\overrightarrow{BE}$,$\overrightarrow{AF}$;
(2)在图中画出$\overrightarrow{D{D}_{1}}$+$\overrightarrow{DB}$+$\overrightarrow{CD}$化简后的向量.

查看答案和解析>>

同步练习册答案