精英家教网 > 高中数学 > 题目详情
3.执行如图所示的程序框图,输出的结果为(  )
A.1B.2C.3D.4

分析 模拟执行程序框图,依次写出每次循环得到的a,b,i的值,当i=3时,满足条件i≥3,退出循环,输出a的值为4.

解答 解:模拟执行程序框图,可得
a=$\frac{3}{2}$,b=1,i=1,
不满足条件i≥3,
a=$\frac{5}{2}$,b=$\frac{3}{2}$,i=2,
不满足条件i≥3,
a=4,b=1,i=3,
满足条件i≥3,
退出循环,输出a的值为4.
故选:D.

点评 本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a,b,i的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax3+bx+1的图象经过点(1,-3)且在x=1处f(x)取得极值.求:
(1)函数f(x)的解析式;
(2)f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“存在x0∈R,2${\;}^{{x}_{0}}$≤0”的否定是(  )
A.不存在x0∈R,2${\;}^{{x}_{0}}$>0B.存在x0∈R,2${\;}^{{x}_{0}}$≥0
C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$0<α<\frac{π}{2}$,$-\frac{π}{2}<β<0$,$cos({\frac{π}{4}+α})=\frac{1}{3}$,$cos({\frac{π}{4}-β})=\frac{{\sqrt{3}}}{3}$则cos(α+β)=$\frac{5\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在三棱锥S-ABC中,SO⊥平面ABC,侧面SAB与SAC均为等边三角形,∠BAC=90°,O为BC的中点,求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某地区最近十年粮食需求量逐年上升,下表是部分统计数据:
年份x20102011201220132014
需求量y万吨236246257276286
(1)利用所给数据求年需求量y与年份x之间的线性回归方程$\hat y=\hat bx+\hat a$.
(2)利用(1)中所求出的线性回归方程预测该地区2016年的粮食需求量.
(附:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}\bar-\bar x)}^2}}}},\hat a=\bar y-\hat b\bar x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列命题:
①函数$y=2{cos^2}(\frac{1}{3}x+\frac{π}{4})-1$是奇函数;
②存在实数α,使得$inα+cosα=\frac{3}{2}$;
③若α,β是第一象限角且α<β,则tanα<tanβ;
④$x=\frac{π}{8}$是函数$y=sin(2x+\frac{5π}{4})$的一条对称轴方程;
⑤函数$y=sin(2x+\frac{π}{3})$的图象关于点$(\frac{π}{12},0)$成中心对称图形.
其中命题正确的是①③④(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足${a_1}{a_2}{a_3}…{a_n}={2^{n^2}}$(n∈N*),且对任意n∈N*都有$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<t$,则实数t的取值范围为$[\frac{2}{3},+∞)$.

查看答案和解析>>

同步练习册答案